
UNIVERSITY OF CALIFORNIA SAN DIEGO

Visualization and assembly methods for microbiome sequencing data

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Marcus William Fedarko

Committee in charge:

Professor Pavel A. Pevzner, Chair
Professor Nuno Bandeira
Professor Melissa Gymrek
Professor Siavash Mirarab

2025

Copyright

Marcus William Fedarko, 2025

All rights reserved.

The Dissertation of Marcus William Fedarko is approved, and it is acceptable

in quality and form for publication on microfilm and electronically.

University of California San Diego

2025

iii

DEDICATION

To my family and friends, who inspire me to be better; and also to the other weird people
who download other people’s theses to read the front matter and then don’t read anything

else in the document. But mostly the first thing though

iv

EPIGRAPH

You were sick, but now you’re well again, and there’s work to do.

— Kurt Vonnegut

“It wasn’t the second helping [of crab], it was the third that hurt,”
said Joe Lee, CEO of parent company Darden Restaurants, on a call
with investors. “And the fourth,” said Red Lobster president Dick Rivera.

— Scott Meslow

v

https://theweek.com/speedreads/567777/endless-crab-could-have-bankrupted-red-lobster

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . x

List of Tables . xiii

Acknowledgements . xiv

Vita . xvii

Abstract of the Dissertation . xix

Chapter 1 Visualization methods for general ’omic data . 1
1.1 Visualizing ’omic feature rankings and log-ratios using Qurro 2

1.1.1 Abstract . 2
1.1.2 Introduction . 3
1.1.3 Implementation . 4
1.1.4 Case study: the gills of Scomber japonicus . 5
1.1.5 Conclusion . 14
1.1.6 Data availability . 15
1.1.7 Acknowledgements . 15
1.1.8 Funding . 16
1.1.9 Conflict of interest statement . 16

1.2 EMPress enables tree-guided, interactive, and exploratory analyses of multi-
omic data sets . 16
1.2.1 Abstract . 16
1.2.2 Importance . 17
1.2.3 Introduction . 17
1.2.4 Results . 19
1.2.5 Discussion . 24
1.2.6 Materials and Methods . 26
1.2.7 Acknowledgements . 32

Chapter 2 Metagenome assembly of long and accurate reads using iterative down-
sampling . 34

2.1 Abstract . 34
2.2 Introduction . 34

vi

2.3 Results . 36
2.3.1 Assembly of a mock community . 36
2.3.2 Assembly of a chicken gut metagenome . 38

2.4 Methods . 40
2.4.1 Iterative downsampling and assembly . 40
2.4.2 Graph simplification . 41
2.4.3 Classifying sequences as similar or dissimilar 44
2.4.4 The life cycle of a read . 45
2.4.5 Identifying and analyzing “reference” edges in the graph 46
2.4.6 Software dependencies . 53
2.4.7 Software design . 53

2.5 Discussion . 53
2.6 Acknowledgements . 54

Chapter 3 Analyzing rare mutations in metagenomes assembled using long and
accurate reads . 55

3.1 Abstract . 55
3.2 Introduction . 56

3.2.1 Deep DNA sequencing and rare mutations . 56
3.2.2 Identifying rare mutations in metagenomic data 57
3.2.3 Simulation models of sequencing data . 58
3.2.4 Phasing rare mutations in HiFi metagenomic data 59
3.2.5 The strainFlye pipeline . 60

3.3 Results . 61
3.3.1 Demonstrating strainFlye . 61
3.3.2 Computing mutation spectra . 62
3.3.3 The target-decoy approach for estimating the FDR of identified

mutations . 63
3.3.4 Estimating the FDR of identified rare mutations using the TDA . . 65
3.3.5 Context-dependent TDA . 66
3.3.6 Codon and amino acid mutation matrices . 72
3.3.7 Diversity indices . 72
3.3.8 Genomic locations of mutations . 73
3.3.9 Growth dynamics of a metagenome . 76
3.3.10 Phasing identified mutations . 76

3.4 Discussion . 80
3.5 Methods . 81

3.5.1 Automatically selecting a decoy contig . 81
3.5.2 Accounting for indisputable mutations . 82
3.5.3 Fixing the estimated FDR of identified rare mutations in a target

contig . 83
3.5.4 Predicting protein-coding genes in contigs . 84
3.5.5 Constructing smoothed reads . 84
3.5.6 Constructing virtual reads . 86

vii

3.5.7 Assembling smoothed and virtual reads . 88
3.5.8 Data sets . 88
3.5.9 Software dependencies . 89
3.5.10 Software availability . 89

3.6 Competing interest statement . 90
3.7 Acknowledgements . 90

Chapter 4 Efficient creation and visualization of exact dot plot matrices 92
4.1 Abstract . 92
4.2 Introduction . 93

4.2.1 Motivation . 93
4.2.2 Related work . 93

4.3 Results . 95
4.3.1 Creating exact dot plots of long sequences . 95
4.3.2 Visualizing multiple dot plots in a single figure 96

4.4 Methods . 100
4.4.1 Space-efficient matrix storage . 100
4.4.2 Space- and time-efficient identification of shared k-mers 100
4.4.3 Rapid visualization of large dot plot matrices 103
4.4.4 Data availability . 103
4.4.5 Software dependencies . 103
4.4.6 Software availability . 104

4.5 Discussion . 104
4.6 Acknowledgements . 105

Appendix A Supplemental material for Chapter 1 . 106
A.1 Supplemental material for Chapter 1.1 . 106

A.1.1 Computing feature differentials using Songbird 106
A.1.2 Qurro log-ratio-selection controls used . 108
A.1.3 Details on Qurro (and Songbird) input data filtering 109

A.2 Supplemental material for Chapter 1.2 . 115
A.2.1 Differential abundance comparison of oral microbiomes 115
A.2.2 Animated analysis of SARS-CoV-2 . 117

Appendix B Supplemental material for Chapter 3 . 118
B.1 Read alignment . 118
B.2 Assembly graph . 124
B.3 Coverages and deletion-rich positions . 130
B.4 Demonstrating strainFlye on the ChickenGut dataset 138
B.5 Applying LoFreq to the SheepGut dataset . 143
B.6 Growth of the number of p-mutations per megabase as p decreases 145
B.7 Codon position analysis details . 148
B.8 Nonsynonymous, nonsense, and transversion decoy contexts 150
B.9 Identifying mutations based solely on read counts . 154

viii

B.10 Constructing and visualizing mutation matrices . 157
B.11 Diversity index details . 163
B.12 Hotspot genes in the three selected MAGs . 166
B.13 Identifying strains in the most mutated gene of BACT1 170
B.14 Plots of mutation locations . 172
B.15 Investigating coldspots . 176
B.16 Growth dynamics . 180
B.17 The link graph structure for haplotype visualization . 181
B.18 Haplotypes of the most mutated gene in CAMP . 186
B.19 Smoothed haplotype assembly graphs . 194

Bibliography . 196

ix

LIST OF FIGURES

Figure 1.1. Log-ratio of Shewanella to Synechococcales . 8

Figure 1.2. Log-ratio of Shewanella to the bottom 98 ranked features for the gill
differentials . 13

Figure 1.3. Earth Microbiome Project paired phylogenetic tree and ordination . . 20

Figure 1.4. EMPress visualizations of three different types of ’omic data 23

Figure 2.1. metaLJA assembly of reads from the ATCC MSA-1003 mock commu-
nity metagenome . 37

Figure 2.2. metaLJA assembly of reads from a chicken cecum metagenome 39

Figure 3.1. strainFlye pipeline . 61

Figure 3.2. FDR curves for eight target contigs in SheepGut 67

Figure 3.3. Rare mutation frequencies vary across codon positions in the three
selected MAGs . 70

Figure 3.4. Diversity indices vary widely across the 468 long contigs in SheepGut 74

Figure 3.5. Mutation spectra of highly mutated genes in the three selected MAGs 77

Figure 3.6. Multiplex de Bruijn graph produced by LJA for CAMP’s smoothed
and virtual reads . 79

Figure 4.1. Exact k = 20 dot plot comparing two E. coli genomes 97

Figure 4.2. All-versus-all dot plot comparisons of five random sequences 98

Figure A.1. Qurro screenshots showing the controls used to recreate Figures 1.1A–C 110

Figure A.2. Qurro screenshots showing the controls used to recreate Figures 1.2A–C 112

Figure A.3. Scatterplot comparing the three differential abundance methods’ re-
sults shown in Figure 1.4C . 116

Figure B.1. Summary of coverage and length across all connected components of
the assembly graph . 127

Figure B.2. Visualization of the connected component containing edge 6104 (cor-
responding to CAMP) in the larger assembly graph 129

x

Figure B.3. Coverage throughout the three selected MAGs, with and without
deletions . 131

Figure B.4. Coverage throughout the three selected MAGs, before each of the two
alignment filtering steps . 134

Figure B.5. Histograms of the amounts of deletion-rich positions in each MAG . . 136

Figure B.6. FDR curves for eight target contigs in ChickenGut 141

Figure B.7. Histograms of freq(pos) for LoFreq’s variant calls across the three
selected MAGs . 145

Figure B.8. Decreasing p increases the number of identified rare p-mutations per
megabase in the three selected MAGs . 146

Figure B.9. Version of Figure 3.3 with y-axis values normalized by the total number
of positions considered in each bar . 149

Figure B.10. Barplots of RS, RN , RNNS, and RNS for various values of p 155

Figure B.11. 64x64 single-nucleotide codon mutation matrix for BACT1 (p = 0.5%) 160

Figure B.12. “Full” codon mutation matrices for the three selected MAGs (p = 0.5%) 162

Figure B.13. 21x21 amino acid / stop codon mutation matrices derived from codon
mutation data for the three selected MAGs (p = 0.5%) 164

Figure B.14. Scatterplot showing coverage for each position within the highest-
mutation-rate genes in CAMP, BACT1, and BACT2 171

Figure B.15. Analyses of the 1,273 429-dimensional binary vectors representing
reads spanning gene 868 in BACT1 . 173

Figure B.16. Locations of p-mutations throughout the three selected MAGs 174

Figure B.17. Coverage and GC skew throughout the three selected MAGs 182

Figure B.18. Histograms showing phasing statistics for each pair of consecutive
mutated positions in the three selected MAGs 185

Figure B.19. Largest components in the link graphs of BACT1 and CAMP 187

Figure B.20. Haplotypes of the 34 mutated positions (p = 10%) located within gene
1217 of CAMP . 190

xi

Figure B.21. Multiplex de Bruijn graphs produced by LJA for the BACT1 and
BACT2 MAGs’ smoothed and virtual reads. 195

xii

LIST OF TABLES

Table B.1. The three selected MAGs for mutation analyses 129

Table B.2. The ten most mutated genes in the three selected MAGs (p = 0.5%) . 168

Table B.3. Information about all coldspots of length ≥ 5,000 bp in BACT1 178

xiii

ACKNOWLEDGEMENTS

There are a lot of people I need to thank, so let’s get this show on the road.

First: thank you to my advisor, Pavel Pevzner. I am aware that taking on a PhD

student out of the blue is a massive commitment, and I will always be thankful to Prof.

Pevzner for his thorough mentorship, support, and patience. I hope that the past few

years’ work comes at least somewhere close to repaying his kindness.

Thank you to the other members of my dissertation committee: Melissa Gymrek,

Nuno Bandeira, and Siavash Mirarab. (Starting in this paragraph, I’m going to be listing

people in alphabetical order by first name.) I am sincerely grateful for their feedback on

my work, and for tolerating the attendant deluge of scheduling emails.

Thank you to the past and present members of the Pevzner Lab I’ve had the chance

to work with (Andrey Bzikadze, Anton Bankevich, Ishaan Gupta, Mikhail Kolmogorov,

Rohan Vanheusden, Vikram Sirupurapu, and Zhenmiao Zhang), as well as the members of

the Bafna and Bandeira Labs, for many helpful discussions and for making our Tuesday

lab meetings enjoyable.

In the first two years of grad school (2018–2019 and 2019–2020) I worked in the

Knight Lab; from 2019–2020, I also worked with the Center for Microbiome Innovation

and IBM AI Horizons Network. I am thankful to the many colleagues I met during these

years whom I had the chance to learn from, befriend, and harangue with näıve questions,

including Antonio González Peña, Anupriya Tripathi, Austin Swafford, Bryn Taylor,

Cameron Martino, Celeste Allaband, Charles Cowart, Dan Hakim, Daniel McDonald,

Erfan Sayyari, Farhana Ali, Franck Lejzerowicz, Gail Ackermann, George Armstrong,

Gibraan Rahman, Greg Humphrey, Greg Sepich-Poore, Ho-Cheol Kim, Jake Minich, Jamie

Morton, Jeff DeReus, Jerry Kennedy, Jon Sanders, Julia Gauglitz, Justin Shaffer, Kalen

Cantrell, Kristen Beck, Larry Smarr, Lisa Marotz, Mehrbod Estaki, Michiko Souza, Niina

Haiminen, Pedro Belda-Ferre, Qiyun Zhu, Rob Knight, Robert Mills, Rodolfo Salido, Sarah

Adams, Shi Huang, Tomasz Kośció lek, Victor Cantu, Yimeng Yang, Yna Villanueva, and

xiv

Yoshiki Vázquez-Baeza. These years feel like a dream now, but I will always remember the

surreal comfort of spending 2020 sequestered in a tiny studio apartment in grad housing

working remotely on EMPress with Kalen and Yoshiki.

I decided to come to grad school largely because of the positive experiences I had

as an undergraduate researcher in Mihai Pop’s lab at the University of Maryland from

2016–2018. I am grateful to Prof. Pop and the wonderful members of his lab I was able

to meet (Brian Brubach, Brook Stacy, Dan Nasko, Harihara Muralidharan, Jacquelyn

Michaelis, Jay Ghurye, Jeremy Selengut, Kiran Javkar, Matt Myers, Nathan Olson, Nidhi

Shah, Seth Commichaux, and Todd Treangen) for their support and kindness. I’m a bit

jealous that UMD set up a fancy new computer science building just as I left for San

Diego, but the Biomolecular Sciences Building (and the network of forested paths across

from it, and the inimitable vibes of College Park, and the frankly unnecessary amount of

pizza places College Park had) will always have a special place in my heart.

Thank you to Stephen Checkoway, the author of the LATEX template I’m using to

typeset this dissertation (https://github.com/stevecheckoway/ucsddissertation). Thank

you also to the various former students who have updated this template over the years to

maintain its compliance with UCSD’s requirements.

Thank you to Andrey, Ishaan, Jennifer (and Finnigan), Tara, Vikram, and Zhenmiao

for making CSE 4250 such a fun office to work in, and for many hours of unproductive

gossiping; thank you to everybody I went running and/or climbing with; thank you to all

my family and friends (from California, from Maryland, and from everywhere else) for

your love and support. Sorry for taking too long to respond to your messages and/or for

inundating you with low-quality internet memes.

Chapter 1.1, in full, is a reprint of the material as it appears in “Visualizing ’omic

feature rankings and log-ratios using Qurro.” Fedarko MW, Martino C, Morton JT,

González A, Rahman G, Marotz CA, Minich JJ, Allen EA, and Knight R. NAR Genomics

and Bioinformatics 2(2), 2020. The dissertation author was the primary investigator and

xv

https://github.com/stevecheckoway/ucsddissertation

first author of this paper.

Chapter 1.2, in full, is a reprint of the material as it appears in “EMPress Enables

Tree-Guided, Interactive, and Exploratory Analyses of Multi-omic Data Sets.” Cantrell

K, Fedarko MW, Rahman G, McDonald D, Yang Y, Zaw T, Gonzalez A, Janssen S,

Estaki M, Haiminen N, Beck KL, Zhu Q, Sayyari E, Morton JT, Armstrong G, Tripathi

A, Gauglitz JM, Marotz C, Matteson NL, Martino C, Sanders JG, Carrieri AP, Song SJ,

Swafford AD, Dorrestein PC, Andersen KG, Parida L, Kim H-C, Vázquez-Baeza Y, and

Knight R. mSystems 6(2), 2021. The dissertation author was a primary investigator and

co-first author of this paper.

Chapter 2, in full, is a reprint of the material as it appears in “Metagenome

assembly of long and accurate reads using iterative downsampling.” Fedarko MW, Zhang

Z, Bankevich A, and Pevzner PA. In preparation. The dissertation author was the primary

investigator and first author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in “Analyzing rare

mutations in metagenomes assembled using long and accurate reads.” Fedarko MW,

Kolmogorov M, and Pevzner PA. Genome Research 32(11-12), 2022. The dissertation

author was the primary investigator and first author of this paper.

Chapter 4, in full, is a reprint of the material as it appears in “Efficient creation and

visualization of exact dot plot matrices.” Fedarko MW. In preparation. The dissertation

author was the primary investigator and sole author of this paper.

xvi

VITA

2018 B.S. with High Honors in Computer Science, University of Maryland

2022 M.S. in Computer Science, University of California San Diego

2023 C. Phil. in Computer Science, University of California San Diego

2025 Ph.D. in Computer Science, University of California San Diego

PUBLICATIONS

Fedarko MW, Kolmogorov M, and Pevzner PA (2022). “Analyzing rare mutations
in metagenomes assembled using long and accurate reads.” Genome Research, 32 (11-
12):2119–2133.

Cantrell K*, Fedarko MW*, Rahman G, McDonald D, Yang Y, Zaw T, Gonzalez A,
Janssen S, Estaki M, Haiminen N, Beck KL, Zhu Q, Sayyari E, Morton JT, Armstrong G,
Tripathi A, Gauglitz JM, Marotz C, Matteson NL, Martino C, Sanders JG, Carrieri AP,
Song SJ, Swafford AD, Dorrestein PC, Andersen KG, Parida L, Kim H-C, Vázquez-Baeza
Y, and Knight R (2021). “EMPress Enables Tree-Guided, Interactive, and Exploratory
Analyses of Multi-omic Data Sets.” mSystems, 6 (2):e01216-20. (* = contributed equally)

Huey SL, Jiang L, Fedarko MW, McDonald D, Martino C, Ali F, Russell DG, Udipi
SA, Thorat A, Thakker V, Ghugre P, Potdar RD, Chopra H, Rajagopalan K, Haas JD,
Finkelstein JL, Knight R, and Mehta S (2020). “Nutrition and the Gut Microbiota
in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India.” mSphere,
5 (5):e00731-20.

Fedarko MW, Martino C, Morton JT, González A, Rahman G, Marotz CA, Minich JJ,
Allen EA, and Knight R (2020). “Visualizing ’omic feature rankings and log-ratios using
Qurro.” NAR Genomics and Bioinformatics, 2 (2):lqaa023.

Sanders JG, Nurk S, Salido RA, Minich J, Xu ZZ, Martino C, Fedarko M, Arthur
TD, Chen F, Boland BS, Humphrey GC, Brennan C, Sanders K, Gaffney J, Jepsen K,
Khosroheidari M, Green C, Liyange M, Dang JW, Phelan VV, Quinn RA, Bankevich A,
Chang JT, Rana TM, Conrad DJ, Sandborn WJ, Smarr L, Dorrestein PC, Pevzner PA,
and Knight R (2019). “Optimizing sequencing protocols for leaderboard metagenomics by
combining long and short reads.” Genome Biology, 20 (1):226.

Ghurye J, Treangen T, Fedarko M, Hervey WJ, and Pop M (2019). “MetaCarvel: linking
assembly graph motifs to biological variants.” Genome Biology, 20 (1):174.

xvii

Meisel JS, Nasko DJ, Brubach B, Cepeda-Espinoza V, Chopyk J, Corrada-Bravo H,
Fedarko M, Ghurye J, Javkar K, Olson ND, Shah N, Allard SM, Bazinet AL, Bergman
NH, Brown A, Caporaso JG, Conlan S, DiRuggiero J, Forry SP, Hasan NA, Kralj J, Luethy
PM, Milton DK, Ondov BD, Preheim S, Ratnayake S, Rogers SM, Rosovitz MJ, Sakowski
EG, Schliebs NO, Sommer DD, Ternus KL, Uritskiy G, Zhang SX, Pop M, and Treangen
TJ (2018). “Current progress and future opportunities in applications of bioinformatics
for biodefense and pathogen detection: Report from the Winter Mid-Atlantic Microbiome
Meet-up, College Park, MD January 10th, 2018.” Microbiome, 6 (1):197.

xviii

ABSTRACT OF THE DISSERTATION

Visualization and assembly methods for microbiome sequencing data

by

Marcus William Fedarko

Doctor of Philosophy in Computer Science

University of California San Diego, 2025

Professor Pavel A. Pevzner, Chair

Microorganisms make homes of our bodies, our food and water, and the world

among us. Recent decades have seen the development of marker gene and metagenome

sequencing—methods that attempt to read the DNA of the microorganisms within a

sample—as tools to study the precise “microbial ecology” of these environments.

The widespread adoption of these methods and accompanying deluge of sequencing

data have led to a need for reliable, user-friendly software that can automate and simplify

common analyses of these data. To this end Chapter 1.1 presents Qurro, a tool for

visualizing feature rankings and log-ratios in the context of differential abundance analyses;

and Chapter 1.2 presents EMPress, a tool for visualizing phylogenetic trees and associated

xix

information. These methods lower the barriers to performing exploratory analyses of

microbiome sequencing data, and are applicable to data produced by other high-throughput

assays such as untargeted mass spectrometry.

The rise of microbiome sequencing has been soured by the reproducibility crisis.

For example, the literature is awash with dramatic, irreproducible claims that the human

gut microbiome is connected to sundry health conditions. These troubles are attributable

in part to the limited resolution available from current sequencing methods: although

small genotypic differences between two strains can be indicative of important phenotypic

differences, current studies often fail to profile genomes to even the species level.

Determining the full genomes of the microorganisms in a sample typically requires at

minimum assembling the reads produced by metagenome sequencing. Chapter 2 describes

metaLJA, a metagenome assembler that uses iterative downsampling and de Bruijn graph

simplification steps to attempt to reconstruct genomes from long and accurate reads.

The remainder of this dissertation describes methods for the high-resolution analysis

of metagenome assemblies like those produced by metaLJA. Chapter 3 presents the

strainFlye pipeline for the identification and analysis of rare mutations in metagenome

assemblies of long and accurate reads, and shows that a wealth of diversity can remain

hidden within even a single metagenome-assembled genome. Finally, Chapter 4 presents

wotplot, a library for the efficient creation and visualization of exact dot plot matrices.

xx

Chapter 1

Visualization methods for general
’omic data

The outputs of many high-throughput “’omic” assays—including marker gene

and metagenome sequencing, RNA-seq, and untargeted mass spectrometry—are often

transformed into a feature table: a matrix where one axis corresponds to samples, the

other axis corresponds to features, and each entry indicates the observed abundance of a

given feature in a given sample [120]. Though the meanings of “feature” and “abundance”

are dependent upon the assay and the ways in which its raw data were transformed into

a feature table, these tables usually share certain statistical properties and can thus be

analyzed in similar ways [49].

There is now widespread agreement, for example, that feature tables produced from

current marker gene and metagenome sequencing projects are compositional: that is, the

sum of all feature abundances for a given sample is in general an arbitrary uninformative

quantity imposed by the sequencing machine [49, 60]. Ignoring this property and analyzing

these data as if they were absolute abundances can lead to incorrect conclusions [60, 132].

Given a feature table and further information about this table’s samples (in a

microbiome sequencing study, for example, some samples might be labelled as being

obtained from “healthy” or “sick” patients), we are often interested in performing a

differential abundance (also known as differential expression) analysis: that is, asking

1

the question of which features are associated with which types of samples [60, 109]. To

aid researchers in answering this question while respecting the compositional nature of

microbiome sequencing data Chapter 1.1 presents Qurro, a visualization tool created to

simplify differential abundance analyses by relating feature rankings to feature log-ratios

(as proposed in [132] and [118]).

The features in a feature table can often be related to each other in a tree—for

example, a phylogenetic tree describing the estimated evolutionary history of a group of

sequences [110, 128, 84], or a hierarchy of molecules [194]. To help researchers analyze

these structures Chapter 1.2 presents EMPress, a tree visualization tool that facilitates

the visual integration of these structures with additional sample and feature information.

EMPress contains novel functionality, such as integration with ordination plots using the

EMPeror tool [200], and uses some optimizations in order to scale to the visualization

of relatively large trees while running in a web browser. EMPress’ barplot functionality

also makes it easily applicable to the visualization of differential abundance information

alongside a tree, as shown for example in Figure 1.4C and in [117].

Qurro and EMPress are both available as plugins through the QIIME 2 framework

[18] or as standalone Python packages. By expediting certain analyses of ’omic data, these

tools have helped advance the pace of bioinformatics research.

1.1 Visualizing ’omic feature rankings and log-

ratios using Qurro

1.1.1 Abstract

Many tools for dealing with compositional “’omics” data produce feature-wise values

that can be ranked in order to describe features’ associations with some sort of variation.

These values include differentials (which describe features’ associations with specified

covariates) and feature loadings (which describe features’ associations with variation along

2

a given axis in a biplot). Although prior work has discussed the use of these “rankings” as

a starting point for exploring the log-ratios of particularly high- or low-ranked features,

such exploratory analyses have previously been done using custom code to visualize feature

rankings and the log-ratios of interest. This approach is laborious, prone to errors and

raises questions about reproducibility. To address these problems we introduce Qurro, a

tool that interactively visualizes a plot of feature rankings (a “rank plot”) alongside a plot

of selected features’ log-ratios within samples (a “sample plot”). Qurro’s interface includes

various controls that allow users to select features from along the rank plot to compute a

log-ratio; this action updates both the rank plot (through highlighting selected features)

and the sample plot (through displaying the current log-ratios of samples). Here, we

demonstrate how this unique interface helps users explore feature rankings and log-ratios

simply and effectively.

1.1.2 Introduction

High-throughput sequencing and metabolomics data detailing the organisms, genes

or molecules identified within a microbial sample are inherently compositional [60, 132]:

that is, absolute abundances are often inaccessible and only relative information can

be obtained from the data. These data must be interpreted accordingly. Performing

a differential abundance analysis in a dataset generally requires selecting a “reference

frame” (denominator) for log-ratio analysis, then relating the resulting log-ratios to sample

metadata [60, 132]. Critically, how to best select such a “reference frame” is an open

question. The implicit use of different references across different studies can be a cause of

irreproducible findings [132].

Various tools for differential abundance analyses including but not limited to

ALDEx2 [49] and Songbird [132] can produce differentials, which describe the (estimated)

log-fold change in relative abundance for features in a dataset with respect to certain

covariate(s) [132]. Similarly, tools like DEICODE [118] can produce feature loadings that

3

characterize features’ impacts in a compositional biplot [2]. Differentials and feature load-

ings alike can be sorted numerically and used as feature rankings, and this representation

provides relative information about features’ associations with some sort of variation in a

dataset [132, 118]. The natural next step is to use these rankings as a guide for log-ratio

analyses (e.g. by examining the log-ratios of high- to low-ranked features). However,

modern studies commonly describe hundreds or thousands of observed features: manually

exploring feature rankings, whether as a tabular representation or as visualized using

one-off scripts, is inconvenient.

Here we present Qurro (pronounced “churro”), a visualization tool that supports

the analysis of feature log-ratios in the context of feature rankings and sample metadata.

Qurro uses a two-plot interface: a “rank plot” shows how features are differentially ranked

for a selected differential or feature loading (as shown in Figures 1.1A and 1.2A), and a

“sample plot” shows log-ratios of the selected features across samples relative to selected

sample metadata field(s) (as shown in Figures 1.1B and C, 1.2B and C). These plots are

linked [11]: selecting features for a log-ratio highlights these features in the rank plot and

updates the y-axis values of samples (corresponding to the value of the currently selected

log-ratio for each sample) in the sample plot. This interface is intended to make it easy for

researchers to explore log-ratios in a dataset, using feature rankings as a starting point.

Due to its unique display, and the availability of multiple controls for feature

selection and plot customization, Qurro simplifies compositional data analyses of ’omic

data.

1.1.3 Implementation

Qurro’s source code is released under the BSD 3-clause license and is available at

https://github.com/biocore/qurro.

Qurro’s codebase includes a Python 3 program that generates a visualization and

the HTML/JavaScript/CSS code that manages this visualization. Qurro can be used as a

4

https://github.com/biocore/qurro

standalone program or as a QIIME 2 plugin [18].

Both plots in a Qurro visualization are embedded as Vega-Lite JSON specifications

[167], which are generated by Altair [197] in Qurro’s Python code. An advantage of

Qurro’s use of the Vega infrastructure is that both plots in a Qurro visualization can be

customized to the user’s liking in the Vega-Lite or Vega grammars. As an example of this

customizability, the Vega-Lite specifications defining Figures 1.1A–C and 1.2A–C of this

paper were edited programmatically in order to increase font sizes, change the number of

ticks shown, etc. (Our Python script that makes these modifications is available online;

please see section 1.1.6, “Data availability”.)

Code dependencies

In addition to Altair, Qurro’s Python code directly relies on the BIOM format [120],

Click (https://palletsprojects.com/p/click), NumPy [196], pandas [211] and scikit-bio

(http://scikit-bio.org) libraries. Qurro’s web code relies on Vega [168], Vega-Lite [167],

Vega-Embed (https://github.com/vega/vega-embed), RequireJS (https://requirejs.org),

jQuery (https://jquery.com), DataTables (https://datatables.net), Bootstrap (https:

//getbootstrap.com), Bootstrap Icons (https://icons.getbootstrap.com), and Popper.js

(https://popper.js.org).

1.1.4 Case study: the gills of Scomber japonicus

To demonstrate the utility of Qurro on a dataset with clear “signals,” we applied it

to an extant dataset of V4-region 16S rRNA sequencing data from Pacific chub mackerel

(Scomber japonicus) and environmental samples [126]. This dataset, currently described

in a preprint, includes samples taken from five S. japonicus body sites (digesta, GI, gill,

pyloric caeca and skin) from 229 fish captured across 38 time points in 2017, along with

many seawater, marine sediment, positive/negative control and non-S. japonicus fish

samples. A Jupyter Notebook [95] showing how we processed this dataset computationally

5

https://palletsprojects.com/p/click
http://scikit-bio.org
https://github.com/vega/vega-embed
https://requirejs.org
https://jquery.com
https://datatables.net
https://getbootstrap.com
https://getbootstrap.com
https://icons.getbootstrap.com
https://popper.js.org

is available online; see section 1.1.6, “Data availability”.

Sample processing and analysis

When these samples were initially sequenced, the KatharoSeq protocol [127] was

followed. This led us to exclude samples with less than 1370 total counts from our analysis

of this dataset.

Sequencing data (already processed using QIIME 1.9.1 [22] and Deblur [3] on

Qiita [61]) were further processed and analyzed using QIIME 2 [18]. Our use of Deblur

outputs as the starting point in our analysis means that “features” in our analysis of

this dataset correspond to “sub-operational-taxonomic-units” (sOTUs), although Qurro is

interoperable with compositional datasets including arbitrary types of “features.”

These sOTUs were assigned taxonomic classifications using q2-feature-classifier [17].

Specifically, we extracted sequences from the SILVA 132 99% database [154] using the

same forward [144] and reverse [6] primer sequences as were used for sample processing,

trained a Näıve Bayes classifier on these extracted sequences, and then used this classifier

(through q2-feature-classifier’s classify-sklearn method [147]) to classify sOTUs in our

dataset based on their sequences.

Due to upstream filtering steps taken in our analysis (a combination of filtering

out non-S. japonicus and non-seawater samples, applying the aforementioned KatharoSeq

sample exclusion criterion, Songbird’s default --min-feature-count of each feature

needing to be present in at least 10 samples, and Qurro’s behavior of filtering out empty

samples and features), 639 samples and 985 features were included in the Qurro visualization

produced for this case study.

Computing “body site” differentials

One basic question about this dataset we investigated using Qurro was of which

features were associated with which S. japonicus body sites. To produce feature rankings

6

accordingly, we used Songbird [132] to compute differentials detailing features’ associations

with samples from each of the five studied body sites, using the seawater samples in the

dataset as a reference category for Songbird’s internal construction of a design matrix

representing the sample categories being analyzed (Appendix A.1.1, “Computing feature

differentials using Songbird”).

In general, highly ranked features for a differential—the (estimated) log-fold change

in relative abundance for a feature with respect to some covariate(s)—are positively

associated with samples from these covariate(s), while lowly ranked features are negatively

associated with these covariate(s). These differentials can therefore be thought of as a

starting point for investigating differentially abundant features for particular fish body

sites in this dataset.

Using Qurro to analyze differentials and log-ratios

Qurro simplifies the process of analyzing features’ log-ratios in the context of

these differentials. The “rank plot” of a Qurro visualization is a bar plot where each bar

corresponds to a single differentially ranked feature. The y-axis values of each feature’s bar

are either the estimated logfold change values for that feature if the feature rankings are

differentials (as is the case in our analysis here, and therefore in Figures 1.1A and 1.2A), or

the loadings of each feature along a selected biplot axis if the feature rankings are feature

loadings in a biplot. In either case, features are sorted in ascending order by these values

along the rank plot’s x-axis. The exact differential or feature loading used is configurable,

so Qurro users can quickly toggle between these; for the case study Qurro visualization,

this means that users can—for example—quickly switch between differentials computed

based on association with skin samples to differentials computed based on association with

gill samples.

7

Figure 1.1. Various outputs from the case study showing the log-ratio of classified
Shewanella features to classified Synechococcales features. (a) “Rank plot” showing
differentials computed based on association with gill samples, using seawater samples
as a reference category in the regression. The term “Log-Ratio Classification” only
refers to the currently selected log-ratio in the Qurro visualization: in this case, this is
the log-ratio of classified Shewanella features to classified Synechococcales features. To
show the rankings of these “selected” features relative to the remaining features in the
dataset, these features are colored in the rank plot: Shewanella features are colored in red,
and Synechococcales features are colored in blue. The remaining features, colored gray,
have a “Log-Ratio Classification” of None because they are not involved in the selected
Shewanella-to-Synechococcales log-ratio. (b) “Sample plot” in boxplot mode, showing
samples’ Shewanella-to-Synechococcales log-ratios by sample body site. Note that only 285
samples are represented in this plot; other samples were either filtered out upstream in
the analysis or contained zeroes on at least one side of their log-ratio. (c) “Sample plot,”
showing a scatterplot of samples’ selected log-ratios versus estimated fish age. Individual
samples are colored by body site. As in panel B, only 285 samples are present. (d)
Ordinary-least-squares linear regression (R2 ≈ 0.1008) between estimated fish age and the
selected log-ratio for just the 143 gill samples shown in B and C, computed outside of
Qurro using scikit-learn [147] and pandas [211] and plotted using matplotlib [78].

8

Highlighting features on the rank plot.

The initial study of this dataset [126] agreed with prior work [152] on the frequency

of Shewanella spp. in the fish gill microbiome. Qurro supports searching for features using

arbitrary feature metadata (e.g. taxonomic annotations), and using this functionality to

highlight Shewanella spp. on the rank plot of gill differentials (Appendix A.1.2, “Qurro

log-ratio-selection controls used”) corroborates these findings: as Figure 1.1A shows, the

majority of identified Shewanella spp. are highly ranked for the gill differentials relative

to the other features in this dataset.

Particularly high- or low-ranked features like Shewanella spp. can merit further

examination via a log-ratio analysis [132]; in particular, one question we might be interested

in asking at this point is if Shewanella spp. are similarly abundant across other fish body

sites. The remainder of this case study discusses a simple exploratory investigation in

pursuit of an answer to this question, as well as to a few other questions that came up

along the way.

Choosing a suitable “reference frame”.

The compositional nature of marker gene sequencing data means that we cannot

simply compare the abundances of Shewanella across samples in this dataset alone; however,

we can instead compare the log-ratio of Shewanella and other features in this dataset

across samples [132].

For demonstrative purposes, we chose the taxonomic order Synechococcales as the

denominator (“reference frame”) for the first log-ratio shown here. Features in this dataset

belonging to this order included sOTUs classified in the genera Cyanobium, Prochlorococcus

and Synechococcus. These are common genera of planktonic picocyanobacteria found

ubiquitously in marine surface waters [169]. The expected stability of this group of features

across samples in this dataset supports its use as a denominator here [132]. Furthermore,

as shown in Qurro’s rank plot in Figure 1.1A, many Synechococcales features are relatively

9

lowly ranked for the gill differentials; this gives additional reason to expect a comparative

difference among gill samples for the Shewanella-to-Synechococcales log-ratio.

Qurro’s computation of log-ratios.

Currently, Qurro computes log-ratios between between arbitrary groups of N

selected numerator features and D selected denominator features by, for each sample

S, computing the log-ratio of the sums of the raw abundances of the numerator and

denominator features:

LogRatio
(
S,N,D

)
= ln

(∑
n∈N

Sn

)
− ln

(∑
d∈D

Sd

)

Computing log-ratios by summing feature abundances in this way, as opposed to

taking the geometric mean of these abundances (e.g. as described in [162]) has benefits

and downsides alike, as discussed in a recent preprint [157]. One benefit is that this

approach is relatively robust to highly sparse datasets like those commonly encountered in

microbiome studies, since the presence of a zero-abundance feature in a group on one side

of a sample’s log-ratio does not necessarily force this sample to have an invalid log-ratio.

There are likely better alternatives to amalgamating feature abundances in this way, but

this approach is useful for exploratory analysis nonetheless (and it is modifiable in Qurro’s

source code, should another method of amalgamation be desired in the future).

Relating log-ratios to sample metadata.

Upon selecting a numerator and a denominator for a log-ratio (in this case, by

searching through taxonomic annotations), Qurro updates the sample plot so that all

samples’ y-axis (“Current Natural Log-Ratio”) values are equal to the value of the selected

log-ratio for that sample. The x-axis field, color field, and scale types of these fields—along

with other options—can be adjusted by the user interactively to examine the selected

log-ratio from new perspectives.

10

Once the log-ratio of Shewanella-to-Synechococcales was selected, Figure 1.1B was

produced by setting the sample plot x-axis to the categorical sample_type_body_site

field and checking the “Use boxplots for categorical data?” checkbox. The resulting boxplot

shows that the Shewanella-to-Synechococcales log-ratio is relatively high in gill samples,

compared with other body sites’ samples (Figure 1.1B). This observation corroborates

the initial study of this dataset on the frequency of Shewanella particular to the fish gill

microbiome [126].

Qurro can visualize quantitative sample metadata, as well. Using this functionality,

we can add additional perspectives to our previously-reached observation. Age has been

discussed as a factor impacting the microbiota of fish gills in this and other datasets

[126, 152], and we use it here as an illustrative example of visualizing a quantitative

metadata field alongside a log-ratio. By setting the x-axis field to the age_2 metadata field

(estimated fish age), changing the x-axis field scale type to “Quantitative,” and setting

the color field to sample_type_body_site, we get Figure 1.1C—a scatterplot showing the

selected log-ratio viewed across samples by the estimated age of their host fish.

One trend that stood out to us in this scatterplot, and one of the reasons we

chose age for this example, is that this plot contains an apparent negative correlation

between the selected log-ratio and estimated fish age for gill samples. To support further

investigation of patterns like this, Qurro can export the data backing the sample plot to a

standard tab-separated file format—this file can then be loaded and analyzed in essentially

any modern statistics software or programming language. This functionality was used to

generate Figure 1.1D, in which we quantify and visualize this correlation for gill samples

using ordinary-least-squares linear regression (R2 ≈ 0.1008). Although obviously not

evidence of a causal relationship, this result opens the door for further investigation of

this trend. One of many possible explanations for this observed trend is that the gills of

younger fish are differentially colonized by Shewanella spp. and/or by Synechococcales;

this may, in turn, be reflective of factors like vertical habitat use, immune development, or

11

food choice.

Interrogating the “multiverse” of reference frames.

Prior literature has shown the impact that choices in data processing can have on

a study’s results, and on the corresponding “multiverse” of datasets generated during this

process [182]. We submit that the choice of reference frame (denominator) in log-ratio

analyses introduces a similar “multiverse”: for a set of n features, there are O(2n) possible

subsets [132], so manually checking all possible reference frames for a given numerator is

an intractable effort for the vast majority of datasets (although various heuristic methods

have been proposed to address this sort of problem, e.g. [162]). In spite of this, the

interactive nature of Qurro simplifies the task of validating results across reference frames.

Revisiting our analysis of Shewanella spp. in the gills of S. japonicus, there are

multiple reasonable choices for reference frames. We chose Synechococcales mostly due to

its expected ubiquity and stability across the marine samples in this dataset, but many

other plausible choices exist.

In Figure 1.2, we repeat the exact same analysis as in Figure 1.1: but instead of

using Synechococcales as the denominator of our log-ratio, we instead select the bottom

∼ 10% (98/985) of features as ranked by gill differentials as the denominator (Figure 1.2A;

Appendix A.1.2, “Qurro log-ratio-selection controls used”). Refreshingly, this log-ratio

also shows clear “separation” of gill samples from other body sites’ samples in the dataset

(Figure 1.2B), as well as a similar negative correlation between estimated fish age and

this log-ratio for gill samples (Figure 1.2C and D) (R2 ≈ 0.1350). This serves as further

evidence for our previous claims: although we still can’t say for sure, we can now more

confidently state that Shewanella spp. seem to be dominant in the gills of S. japonicus,

and that Shewanella abundance in these fishes’ gills seems to be negatively correlated with

(estimated) fish age—since the trends shown in Figures 1.1B–D and 1.2B–D have held up

across multiple log-ratios with Shewanella as the numerator.

12

Figure 1.2. Various outputs from the case study (analogous to those in Figure 1.1)
showing the log-ratio of classified Shewanella features to the bottom 98 ranked features
for the gill differentials. (a) “Rank plot” analogous to that shown in Figure 1.1A, with
the selected numerator features (those classified as Shewanella spp.) colored in red and
the selected denominator features (the bottom 98 ranked features for the gill differentials)
colored in blue. (b) “Sample plot” in boxplot mode, showing the selected log-ratios of
samples by body site. 252 samples are represented in this plot; as in Figure 1.1B, other
samples were either filtered out upstream in the analysis or contained zeroes on at least
one side of their log-ratio. (c) “Sample plot,” showing a scatterplot of samples’ selected
log-ratios versus estimated fish age. Individual samples are colored by body site. As
in panel B, only 252 samples are present. (d) Ordinary-least-squares linear regression
(R2 ≈ 0.1350) between estimated fish age and the selected log-ratio for just the 96 gill
samples shown in B and C, computed outside of Qurro as specified for Figure 1.1D.

13

Handling “invalid” samples.

It is worth noting that many samples—including all of the seawater samples in

the Qurro visualization (Appendix A.1.3, “Details on Qurro (and Songbird) input data

filtering”)—are not present in Figures 1.1B–D or 1.2B–D. If a given sample in Qurro cannot

be displayed for some reason—for example, the sample has a zero in the numerator and/or

denominator of the currently selected log-ratio—Qurro will drop that particular sample

from the sample plot. Furthermore, to make sure the user understands the situation,

Qurro will update a text display below the plot that includes the number and percentage

of samples excluded for each “reason.” This behavior helps users avoid spurious results

caused by visualizing only a small proportion of a dataset’s samples.

Using Qurro in practice

Since Qurro visualizations are essentially just web pages it is trivial to host them

online, thus making them viewable by anyone using a compatible web browser. As an

example of this we have made Qurro visualizations of various datasets, including the case

study’s, publicly available at https://biocore.github.io/qurro. We encourage users of

Qurro to share their visualizations in this way, whenever possible, in order to encourage

reproducibility and facilitate public validation of the conclusions drawn. Furthermore, we

encourage readers of this paper to reconstruct Figures 1.1 and 1.2 and verify that this

paper’s claims are accurate.

1.1.5 Conclusion

Qurro serves as a natural “first step” for users of modern differential abundance

tools to consult in order to analyze feature rankings, simplifying the work needed to go

from hypothesis to testable result. We have already found it useful in a variety of contexts,

and it is our hope that others find similar value.

As more techniques for differentially ranking features become available, we believe

14

https://biocore.github.io/qurro

that Qurro will fit in as a useful piece within the puzzles represented by modern ’omic

studies.

1.1.6 Data availability

All data used was obtained from study ID 11721 on Qiita. Deblur output artifact

ID 56427 was used, in particular. Sequencing data is also available at the ENA (study

accession PRJEB27458). Various Jupyter Notebooks and files used in the creation of this

paper are available at https://github.com/knightlab-analyses/qurro-mackerel-analysis.

1.1.7 Acknowledgements

The authors thank the anonymous reviewers for their thoughtful feedback and

suggestions on the manuscript. The authors thank Julia Gauglitz, Shi Huang, Franck

Lejzerowicz, Robert Mills, Justin Shaffer, Seth Steichen, Bryn Taylor and Yoshiki Vázquez-

Baeza for helpful comments on the tool’s functionality and design. The authors thank

Gail Ackermann for assistance with study metadata. The authors thank Jerry Kennedy,

Yoshiki Vázquez-Baeza, and Austin Swafford for assistance with funding information.

The authors thank Jake VanderPlas, Dominik Moritz and the rest of the Altair/Vega

development teams for answering questions regarding their software. Finally, the authors

thank Sarah Allard, Tomasz Kośció lek, Franck Lejzerowicz, Anupriya Tripathi and Yoshiki

Vázquez-Baeza for help naming the tool.

Chapter 1.1, in full, is a reprint of the material as it appears in “Visualizing ’omic

feature rankings and log-ratios using Qurro.” Fedarko MW, Martino C, Morton JT,

González A, Rahman G, Marotz CA, Minich JJ, Allen EA, and Knight R. NAR Genomics

and Bioinformatics 2(2), 2020. The dissertation author was the primary investigator and

first author of this paper.

15

https://github.com/knightlab-analyses/qurro-mackerel-analysis

1.1.8 Funding

This work is partly supported by IBM Research AI through the AI Horizons

Network and the UC San Diego Center for Microbiome Innovation (to R.K. and M.W.F.);

Joint University Microelectronics Program (JUMP)’s Center for Research on Intelligent

Storage and Processing-in-memory (CRISP) [GI18518 to R.K. and M.W.F.]; University

of California San Diego Computer Science and Engineering Department (to M.W.F.);

University of California San Diego Frontiers of Innovation Scholars Program (to C.M.);

National Science Foundation [GRFP DGE1144086 to J.T.M.]; National Institute of Dental

and Craniofacial Research through F31 Fellowship [1F31DE028478 to C.A.M.]; University

of California San Diego Center for Microbiome Innovation through Microbial Sciences

Graduate Research Fellowship (to J.J.M.).

1.1.9 Conflict of interest statement

None declared.

1.2 EMPress enables tree-guided, interactive, and

exploratory analyses of multi-omic data sets

1.2.1 Abstract

Standard workflows for analyzing microbiomes often include the creation and cura-

tion of phylogenetic trees. Here we present EMPress, an interactive web tool for visualizing

trees in the context of microbiome, metabolome, and other community data scalable

to trees with well over 500,000 nodes. EMPress provides novel functionality—including

ordination integration and animations—alongside many standard tree visualization features

and thus simplifies exploratory analyses of many forms of ’omic data.

16

1.2.2 Importance

Phylogenetic trees are integral data structures for the analysis of microbial communi-

ties. Recent work has also shown the utility of trees constructed from certain metabolomic

data sets, further highlighting their importance in microbiome research. The ever-growing

scale of modern microbiome surveys has led to numerous challenges in visualizing these

data. In this paper we used five diverse data sets to showcase the versatility and scalability

of EMPress, an interactive web visualization tool. EMPress addresses the growing need

for exploratory analysis tools that can accommodate large, complex multi-omic data sets.

1.2.3 Introduction

The increased availability of sequencing technologies and automation of molecular

methods have enabled studies of unprecedented scale [189], prompting the creation of

tools better suited to store, analyze [18], and visualize [200] studies of this magnitude.

Many of these tools, including for example UniFrac [110], phylofactor [207], PhILR [178],

and Gneiss [133], make use of tree structures in some way: often these structures are

phylogenetic trees detailing the evolutionary relationships among features in a data set,

although this category also includes general dendrograms that organize features in a

hierarchical structure (e.g., clustering of mass spectra) [194]. The challenge of enabling

fully interactive analyses stems from the disconnect between tools that focus on features

(for example, microbial relative abundances) and tools that focus on samples (for example,

alpha diversity distributions). In addition, few tools can interactively integrate multiple

representations of the data side-by-side [136] while scaling to display large data sets. We

view this as a key unresolved challenge for the field: to contextualize community-level

patterns (groupings of samples) together with feature-level structure, i.e., which features

lead to the groupings explained in a given sample set.

Although many useful phylogenetic visualization and analysis tools are available,

17

few focus on community analysis tasks. The current state of the art includes specialized

tools like Anvi’o [44], which consolidates a large collection of methods for sequence-based

analysis and visualization of metagenomic assembled-genomes, pangenomes, and proteins

(among many other data types). The state of the art also includes more general-purpose

tree visualization tools like PHYLOViZ [136], SigTree [183], and iTOL [104] (among

many others). Although tree structures are usually stored in standard file formats like

Newick, the data accompanying these trees—for example, tip-level taxonomic classifications

or other metadata values—are less standardized and sometimes require the onerous

creation of configuration files. Furthermore, some types of exploratory analyses are not

easily possible: for example, ordination plots computed from UniFrac [110] distances (or

other phylogenetically informed distances) are often used to visualize sample clustering

patterns in microbiome studies. However, interpreting the patterns in these plots—and

determining which features influence the separation of certain groups of samples—is not

always straightforward. While biplots can improve legibility by showing information about

influential features alongside samples, the phylogenetic relationships of these features are

not always obvious.

To address these and other outstanding gaps in the state of the art, we introduce

EMPress (https://github.com/biocore/empress), an open-source (BSD 3-clause), inter-

active and scalable phylogenetic tree viewer accessible as a QIIME 2 [18] plugin or as

a standalone Python program. EMPress is built around the high-performance balanced

parentheses tree data structure [31] and uses a hardware-accelerated WebGL-based ren-

dering engine that allows EMPress to visualize trees with hundreds of thousands of nodes

from within a laptop’s web browser (see section 1.2.6, “Materials and Methods”). EMPress

visualizations can be created solely from a tree, or users can optionally provide additional

metadata files and a feature table to augment the visualization. Additionally, through

integration with the widely-used EMPeror software [200], EMPress can simultaneously

visualize a study’s phylogenetic tree alongside an ordination plot of the samples in the data

18

https://github.com/biocore/empress

set (in what we colloquially term an “EMPire plot”). User actions in one visualization,

such as selecting a group of samples in the ordination, update the other (in this case,

highlighting the portions of the tree corresponding to these samples), providing context

that would not be easily accessible with independent visualizations. This tight integration

between displays streamlines several use-cases elaborated below that previously required

manual investigation or writing custom scripts.

1.2.4 Results

Rather than providing a programmatic interface for the procedural generation of

styled phylogenetic trees [216, 77, 158], EMPress provides an interactive environment

to support exploratory feature- and sample-level tree-based analyses. One of the ways

EMPress stands out is in its scalability in comparison to other web-based tree viewers:

iTOL [104] claims trees with more than 10,000 tips to be “very large” (https://itol.embl.de

/help.cgi), while EMPress readily supports trees with over hundreds of thousands of tips, as

shown in Figure 1.3. Many visualization customization options available in EMPeror [200],

iTOL [104], and Anvi’o [44] are immediately accessible in EMPress’ interface. Continuous

metadata associated with the tips of the tree can be visualized as barplots with a color

gradient and/or by mapping each value to the height of each bar. Similarly, categorical

sample metadata information can be visualized using a stacked barplot showing—for

each tip—the proportion of samples containing that tip stratified by category. These

options are available in EMPress’ user interface, based on the data provided by the user to

EMPress when creating a visualization, and—providing data files are stored in an accepted

format—do not require programming or the creation of configuration files.

EMPress also aids interpretation of ordination plots by optionally providing a

unified interface where the tree and ordination visualizations are displayed side-by-side

and “linked” through sample and feature identifiers [12]. This combination of EMPress

and EMPeror [200] allows for many novel exploratory data analysis tasks. For example,

19

https://itol.embl.de/help.cgi
https://itol.embl.de/help.cgi

Figure 1.3. Earth Microbiome Project paired phylogenetic tree (including 756,377
nodes) and unweighted UniFrac ordination (including 26,035 samples). (A) Graphical
depiction of EMPress’ unified interface with fragment insertion tree (left) and unweighted
UniFrac sample ordination (right). Tips are colored by their phylum-level taxonomic
assignment; the barplot layer is a stacked barplot describing the proportions of samples
containing each tip summarized by level 1 of the EMP ontology. Inset shows summarized
sample information for a selected feature. The ordination highlights the two samples
containing the tip selected in the tree enlarged to show their location. (B) Subset
of EMP samples with pH information: the inner barplot ring shows the phylum-level
taxonomic assignment, and the outer barplot ring represents the mean pH of all the
samples where each tip was observed. (C) pH distributions summarized by phylum-level
assignment with median pH indicated by dotted lines. Interactive figures can be accessed
at https://github.com/knightlab-analyses/empress-analyses.

20

https://github.com/knightlab-analyses/empress-analyses

selecting a group of samples in the ordination highlights nodes in the tree present in those

samples and vice versa (see section 1.2.6, “Materials and Methods”). This integration

extends to biplots: clicking feature arrows in the ordination highlights the corresponding

node in the tree. Lastly, EMPress supports the visualization of longitudinal studies by

simultaneously showing tree nodes unique to groups of samples at each individual time

point during an EMPeror animation (see section 1.2.6, “Materials and Methods”).

Scalability: visualizing data from the Earth Microbiome Project.

Using the first data release of the Earth Microbiome Project (EMP), we demonstrate

EMPress’ scalability by rendering a 26,035-sample ordination and a 756,377-node tree

(Figure 1.3A). We also demonstrate EMPress’ ability to annotate large tree visualizations

with categorical “feature” (i.e., corresponding to nodes in the tree) metadata: to visualize

the relative proportions of taxonomic groups at the phylum level, we use EMPress’ feature

metadata coloring to color tips in the tree by their phylum-level taxonomic classifications

(see section 1.2.6, “Materials and Methods”). We extend this further by demonstrating

EMPress’ ability to visualize sample-level categorical metadata: we add a barplot layer

showing, for each tip in the tree, the proportions of samples containing each tip summarized

by level 1 of the EMP ontology (“Free-living” and “Host-associated”).

The paired “EMPire plot” visualizations supported by EMPress’ integration with

EMPeror allow users to click on a tip in the tree (in EMPress) and view the samples that

contain that feature in the ordination (in EMPeror). Clicking on an internal node in the

tree functions similarly, showing all samples that contain any of the descendant tips of

this node. These actions, and other functionality unique to these paired visualizations, are

especially useful when analyzing data sets with outliers or mislabeled metadata. Figure

1.3A shows an example of this functionality in practice, in which the samples in which a

tip in the tree is present are highlighted dynamically in an ordination.

EMPress’ barplots can also be used to summarize environmental metadata: as a

21

demonstration of this, Figure 1.3B shows the subset of samples (4,002) with recorded

pH information and a barplot layer with the mean pH where each feature was found.

The barplot reveals a relatively dark section near many tips classified in the phylum

Firmicutes ; in concert with histograms showing mean pH for each phylum (Figure 1.3C),

we can confirm that Firmicutes-classified sequences are more commonly found in higher-pH

environments. These and the other observations highlighted here indicate the utility of

EMPress for exploratory analyses of large, complex data sets.

Versatility: visualizing diverse types of data.

EMPress—both in the visualization of tree structures and in the visualization of

various types of metadata alongside these structures—can be applied to many types of

“‘omic” data sets. To illustrate this versatility, we reanalyzed a COVID-19 metatranscrip-

tome sequencing data set [177], a liquid chromatography-mass spectrometry (LC-MS)

untargeted metabolomic food-associated data set [194], and a 16S rRNA gene sequencing

oral microbiome data set [132]. Despite the vastly different natures of these data sets,

EMPress provides meaningful functionality for their analysis and visualization. Movie S1

(Appendix A.2.2, “Animated analysis of SARS-CoV-2”) shows a longitudinal exploratory

analysis using EMPress and EMPeror representing a subset of SARS-CoV-2 genome data

from GISAID. This paired visualization emphasizes the relationships in time and space

among “community samples” and the convergence of locales in the United States with the

outbreak in Italy (see section 1.2.6, “Materials and Methods”). The interactive nature

of EMPress allows rapid visualization of strains observed in a collection of samples from

different geographical locations.

Figure 1.4A showcases EMPress’ ability to identify feature clusters that are dif-

ferentially abundant in COVID-19 patients compared to community-acquired pneumonia

patients and healthy controls [177]. Clades showing KEGG enzyme code (EC) [87] annota-

tions are collapsed at level two except for lyases, highlighting feature 4.1.1.20 (carboxy-lyase

22

Figure 1.4. EMPress is a versatile exploratory analysis tool adaptable to various ’omics
data types. (A) RoDEO differential abundance of microbial functions from metatranscrip-
tomic sequencing of COVID-19 patients (n = 8) versus community-acquired pneumonia
patients (n = 25) and versus healthy control subjects (n = 20). The tree represents
the four-level hierarchy of the KEGG enzyme codes. The barplot depicts significantly
differentially abundant features (P < 0.05) in COVID-19 patients. Clicking on a tip
produces a pop-up insert tabulating the name of the feature, its hierarchical ranks, and
any feature annotations. (B) Global FoodOmics Project LC-MS data. Stacked barplots
indicate the proportions of samples (n = 70) (stratified by food) containing the tips
in an LC-MS Qemistree of food-associated compounds, with tip nodes colored by their
chemical superclass. (C) De novo tree constructed from 16S rRNA sequencing data from
32 oral microbiome samples. Samples were taken before (n = 16) and after (n = 16)
subjects (n = 10) brushed their teeth; each barplot layer represents a different differential
abundance method’s measure of change between before- and after-brushing samples. The
innermost layer shows estimated log-fold changes produced by Songbird, the middle layer
shows effect sizes produced by ALDEx2, and the outermost layer shows the W-statistic
values produced by ANCOM (see section 1.2.6, “Materials and Methods”). The tree is
colored by tip nodes’ phylum-level taxonomic classifications. Interactive figures can be
accessed at https://github.com/knightlab-analyses/empress-analyses.

23

https://github.com/knightlab-analyses/empress-analyses

diaminopimelate decarboxylase) that was more abundant in COVID-19 here and in an

independent metaproteomic analysis of COVID-19 respiratory microbiomes [116].

Recent developments in cheminformatics have enabled the analysis and visualization

of small molecules in the context of a cladogram [194]. Using a tree that links molecules

by their structural relatedness, we analyzed untargeted LC-MS/MS data from 70 food

samples (see section 1.2.6, “Materials and Methods”). With EMPress’ sample metadata

barplots, we can inspect the relationship between chemical annotations and food types.

Figure 1.4B shows a tree where each tip is colored by its chemical superclass and where

barplots show the proportion of samples in the study containing each compound by food

type. This representation reveals a clade of lipids and lipid-like molecules that are well

represented in animal food types and seafoods. In contrast, salads and fruits are broadly

spread throughout the cladogram.

Lastly, in Figure 1.4C, we compare three differential abundance methods in an oral

microbiome data set [132] as separate barplot layers on a tree. This data set includes

samples (n = 32) taken before and after subjects brushed their teeth (see section 1.2.6,

“Materials and Methods”). As observed across the three differential abundance tools’

outputs, all methods agree broadly on which features are particularly “differential” (for

example, a group of sequences classified in the phylum Firmicutes in the bottom right of

the tree; see section 1.2.6, “Materials and Methods”), although there are discrepancies

due to different methods’ assumptions and biases.

1.2.5 Discussion

Future work on visualization integration.

By providing an intuitive interface supporting both categorically new and established

functionality, EMPress complements and extends the available range of tree visualization

software. EMPress can perform community analyses across distinct “’omics” types, as

demonstrated here. Moving forward, facilitating the integration of multiple orthogonal

24

views of a data set at a more generalized framework level (for example, using QIIME 2’s

[18] visualization API) will be important as data sets continue to grow in complexity, size,

and heterogeneity.

Validating visual observations and aiding reproducibility.

It is important to note that making visual observations using EMPress does not

eliminate the need for providing statistical support. For example, various layout and

branch length options available in EMPress can drastically affect the perceived size of a

clade or taxonomic group. We therefore recommend that users remain careful of the need

to validate their claims, in order to ensure that conclusions drawn are not solely visual

artifacts. In the context of microbial ecology studies, tools like Phylofactor, Gneiss, and

PhILR can complement observations made with EMPress well.

Similarly, although the various exploratory (post hoc) analyses shown in this paper

are simplified by EMPress, they are not a substitute for sound hypothesis-driven science

and should not be presented as such [74]. Exploratory analyses, when documented

transparently, can be useful to the scientific community [74]; our hope is that, by providing

a tool that simplifies these analyses of complex data, EMPress can fulfill a legitimate

scientific need. One way we believe EMPress helps fulfill this need is through the inherent

shareability of its outputs (see section 1.2.6, “Materials and Methods”). This shareability

simplifies the process of reproducing a visualization in EMPress, as well as the interactive

exploration of alternative representations of a data set. As an example of this, we have

provided QZV files for Figures 1.3 and 1.4 on GitHub (see section 1.2.6, “Materials and

Methods”), and we encourage readers to reproduce these figures for themselves. We

acknowledge that “reproducibility” of this kind is limited to the files the user provides

when creating an EMPress visualization—and since the same data and same methods are

used in the reproduction as in the original visualization, this therefore does not necessarily

add evidence that conclusions derived from the visualization are completely correct [170].

25

However, we contend that it can still be beneficial for readers and authors alike, and

we hope that by simplifying the sharing of EMPress visualizations we can encourage

researchers to share their visualizations and make clear the exploratory nature of their

work.

Tree shearing in the context of community data.

In order to aid in the analysis of community data, EMPress—when a feature table

is provided—by default shears the tree to include only tips that are found in the feature

table. This preprocessing step visually emphasizes samples spanning only a small number

of tips within larger reference trees. Since this option may not always be desired—if, for

example, the focus of an analysis is to compare novel diversity to a reference database—this

option can be disabled from the command line.

1.2.6 Materials and Methods

All EMPress plots in this paper were visualized and stylized in Safari (14.0) or

Google Chrome (85.0.4183.121) using a MacBook Pro (15-inch, 2017) with a 2.9-GHz Quad-

Core Intel Core i7 7820QM, 16 GB of RAM, a Radeon Pro 560 4 GB, and Intel HD Graphics

630 1,536-MB graphics processor. Data, analyses, and steps to reproduce the figures in

this paper can be found at https://github.com/knightlab-analyses/empress-analyses. Due

to file size restrictions on GitHub, some files are downloaded by executing the Jupyter

notebook associated with each figure.

Earth Microbiome Project.

The EMP release 1 [189] table, tree, and metadata were used to generate the

visualization (ftp://ftp.microbio.me/emp/release1). The original feature table was subset

to remove sterile water blanks and mock community samples. The table contains the

taxonomic assignments used to annotate tips. For ease of visualization, only the top 5

most abundant phylum annotations in the data set were kept while microbial features

26

https://github.com/knightlab-analyses/empress-analyses
ftp://ftp.microbio.me/emp/release1

annotated with any other phylum (or unspecified) were categorized as “Other.” A distance

matrix was generated by computing the unweighted UniFrac distances between samples

[110, 122] that was then used to generate the principal-coordinate plot.

A subset of the feature table was generated by extracting all samples in the middle

90% of the pH range (4.7 to 9) to remove outliers. Samples without a valid pH value

were removed. For each remaining feature, the number of samples (log10) in which this

feature occurred and the mean pH of those samples were calculated and saved as a feature

metadata file passed into EMPress. Calculations were performed using NumPy v1.18.1

[70] and Pandas v0.25.3 [211, 159]. Distributions of pH were plotted using matplotlib

v3.1.3 [24] and seaborn v0.10.0 [208].

COVID-19 metatranscriptome data set.

The COVID-19 bronchoalveolar lavage fluid metatranscriptome sequencing data

[177] consists of COVID-19 (n = 8), community-acquired pneumonia (n = 25), and

healthy control (n = 20) samples. The tree for this data set corresponds to the KEGG

enzyme code (EC) [87] hierarchy. Sequencing reads were processed and annotated with EC

feature labels using PRROMenade [195, 67] with a database of bacterial and viral protein

domains from the IBM Functional Genomics Platform [172], as previously reported [67].

Differential abundance per feature was determined by performing a Kolmogorov-Smirnov

test on average RoDEO-processed [67, 66] values per sample. A cutoff (P < 0.05) was

applied to focus the visualization on the features that are significantly more abundant or

less abundant in COVID-19 patients than in healthy controls and/or community-acquired

pneumonia samples.

Global FoodOmics data set.

The untargeted metabolomics data set was generated using a quadrupole time

of flight (QTOF) mass spectrometer in positive ionization mode (Bruker). The samples

27

presented in this data set were processed using Qemistree version 2020.1.1114.g1b4edb4

running in QIIME 2 version 2019.7. For ease of interpretation, the data set was subset to

keep features with a superclass assignment and keep samples with a common meal type

classification. The tip barplots show the proportion of samples where each small molecule

is present summarized by meal type.

Differential abundance comparison of oral microbiomes.

The oral microbiome 16S rRNA sequencing data used in reference [132] was revisu-

alized for Figure 1.4C. This data set comprises n = 32 samples total, taken before and

after subjects brushed their teeth. Some paired samples were taken more than once from

the same subject; in total, these 32 samples were contributed by 10 unique subjects.

The sequences in this data set were processed (in July 2018) using Deblur v1.0.4

[3] through q2-deblur in QIIME 2 2018.6 [18]. Taxonomic classifications were assigned

(in August 2018) using q2-feature-classifier’s [17] classify-sklearn method [147], using

the Greengenes reference database [121], also in QIIME 2 2018.6. The table provided

lacks provenance information due to not being stored as a QIIME 2 artifact, but since its

features are a subset of those in the sequences file—and since the lowest number of samples

that a feature within it is present in is 6—it was likely filtered at some point. To construct

a rooted tree from the sequences in this data set (in September 2020), we used QIIME 2

2019.10’s qiime phylogeny align-to-tree-mafft-fasttree pipeline [89, 153, 102].

In reference [132], three differential abundance tools were run on this data set, using

the “brushing_event” metadata field (indicating before/after toothbrushing status) as the

sole field across which to identify differentially abundant features. The three differential

abundance tools used in reference [132] and visualized in Figure 1.4C are Songbird [132],

ALDEx2 [49], and ANCOM [113]. Songbird’s column of feature differentials (describing

the estimated log-fold changes of each feature between the “after” and “before” brushing

states) is shown as the innermost barplot layer in Figure 1.4C; ALDEx2’s per-feature effect

28

size is shown as the middle layer; and ANCOM’s per-feature W-statistic is shown as the

outermost layer. For both Songbird and ALDEx2 results, higher values indicate association

with before-brushing samples (i.e., features that decreased most from toothbrushing, for

example, secondary metabolizers present on the outer layers of dental plaque biofilms such

as Haemophilus) while lower values indicate association with after-brushing samples (i.e.,

features that decreased least from toothbrushing, for example, primary metabolizers such

as Actinomyces that are rooted at the base of the biofilm) [132]. ANCOM’s W-statistic

corresponds to the number of log-ratio hypothesis tests in which a given feature was

found to be differentially abundant between before- and after-brushing samples [113]

(https://forum.qiime2.org/t/1844/10). Since Songbird and ALDEx2’s results include

directionality between before and after brushing, they are shown in Figure 1.4C with

a “diverging” color map; ANCOM’s W-statistic does not include this information and

is therefore shown with a “sequential” color map (see Figure A.3 in Appendix A.2.1,

“Differential abundance comparison of oral microbiomes”).

We note that the Songbird results from reference [132] did not include differentials

for nine features in the data set; this may have been due to software bugs or other unknown

factors in the data analysis, since (although Songbird does filter out features present in

less than a given number of samples) these absent features are present in the same number

of samples as other features which were included in the Songbird differentials. For the

sake of simplicity here, and since the purpose of this subfigure is primarily to demonstrate

the utility of EMPress in the context of existing data, we simply reused the data from

reference [132], filtering these nine features out of the data set before constructing and

visualizing the tree.

Animated analysis of SARS-CoV-2.

The GISAID [39] SARS-CoV-2 genome alignment and genome metadata were

obtained on 21 September 2020. Sequences were converted to DNA and subset to the set

29

https://forum.qiime2.org/t/1844/10

of sequences associated with Italy, Madrid, King County, San Diego, Brooklyn, Queens,

and Manhattan. Highly gapped and high-entropy positions in the alignment were filtered

using q2-alignment (2020.6; default parameters). A tree was estimated using FastTree

[153] (v2.1.10 compiled with double precision support; default options except -fastest)

and subsequently rooted using midpoint rooting as implemented by q2-phylogeny (2020.6;

default parameters).

Separately, a sliding window procedure was developed to assess the observed SARS-

CoV-2 genomes within a given time period within a geographic location. To do so, the

metadata were partitioned into the respective locations (note that the three New York

boroughs were treated as New York) and ordered by the genome date information. A

sliding window width of 7 days was used, and a sample was retained only if five or more

strains were observed within a window. These windows were then aggregated into a

BIOM table [120] with the GISAID strain identifier on one axis and a “community sample”

identifier on the other. Unweighted UniFrac (q2-diversity 2020.6 [18, 122]) was then

computed over these samples followed by a principal-coordinate analysis. The tree and

ordination were visualized with a development version of EMPress (version 0.3.0-dev),

and therefore, the visualization shown in the video may look slightly different from more

recent versions of EMPress.

Implementation details.

EMPress is implemented as a QIIME 2 plugin (or standalone Python program,

usable outside QIIME 2) capable of generating HTML documents with a self-contained

visualization user interface. The code-base is composed of a Python component and a

JavaScript component. The Python code-base is responsible for data validation, prepro-

cessing, filtering, and formatting. User interaction, rendering, and figure generation are all

handled by the JavaScript code-base. In both cases, we rely on the balanced parentheses

data structure [31] to rapidly operate on the tree structures.

30

EMPress’ Python code-base currently uses NumPy [70], SciPy [203], Pandas [211,

159], Click (https://palletsprojects.com/p/click/), Jinja2 (https://jinja.palletsprojects.co

m/), scikit-bio (http://scikit-bio.org), the BIOM format [120], iow (https://github.com/w

asade/improved-octo-waddle) [31], and EMPeror [200]. The JavaScript code-base uses

Chroma.js (https://gka.github.io/chroma.js/), FileSaver.js (https://github.com/eligrey/F

ileSaver.js/), glMatrix (http://glmatrix.net/), jQuery (https://jquery.com/), Require.js

(https://requirejs.org/), Spectrum (https://bgrins.github.io/spectrum/), and Underscore.js

(https://underscorejs.org/). For testing and linting, EMPress’ Python code-base uses

flake8 (https://flake8.pycqa.org/en/latest/) and nose (https://nose.readthedocs.io/),

and EMPress’ JavaScript code-base uses QUnit (https://qunitjs.com/), qunit-puppeteer

(https://github.com/davidtaylorhq/qunit-puppeteer/), jshint (https://jshint.com/about/),

and Prettier (https://prettier.io/).

As of writing, EMPress supports drawing trees using three standard layout algo-

rithms (“rectangular,” “circular,” and “unrooted”), coloring the tree using sample and

feature metadata, collapsing clades based on common metadata values, adding tip-aligned

barplots for sample and feature metadata, and summarizing tips’ presence within sample

groups using interactive node selections. This is in addition to integration with EMPeror,

described further below, as well as various other visualization options.

EMPress’ “unrooted” layout algorithm is translated from code from Gneiss [133],

which was in turn adapted from PyCogent [96], and is an implementation of the equal-

angle algorithm described in reference [47]. EMPress’ “rectangular” and “circular” layout

algorithms are adapted from code from TopiaryExplorer [150] and resemble the rooted

tree drawing algorithms described in reference [47]. EMPress also includes the ability

to reorder sibling clades in the rectangular and circular layouts by the number of tips

contained within each clade; this functionality was inspired by iTOL’s [104] “leaf sorting”

option and uses tree traversal code adapted from scikit-bio (http://scikit-bio.org).

In order to integrate EMPress and EMPeror, we link together events triggered

31

https://palletsprojects.com/p/click/
https://jinja.palletsprojects.com/
https://jinja.palletsprojects.com/
http://scikit-bio.org
https://github.com/wasade/improved-octo-waddle
https://github.com/wasade/improved-octo-waddle
https://gka.github.io/chroma.js/
https://github.com/eligrey/FileSaver.js/
https://github.com/eligrey/FileSaver.js/
http://glmatrix.net/
https://jquery.com/
https://requirejs.org/
https://bgrins.github.io/spectrum/
https://underscorejs.org/
https://flake8.pycqa.org/en/latest/
https://nose.readthedocs.io/
https://qunitjs.com/
https://github.com/davidtaylorhq/qunit-puppeteer/
https://jshint.com/about/
https://prettier.io/
http://scikit-bio.org

by each of the applications by inserting “callback” code that can be executed in one

application when a given event occurs. These events notify each tool that a particular

action needs to take place, and if needed, what data should be used in this context. For

example, when a user selects a group of samples in EMPeror, the “select” event is triggered

with a collection of sample objects. EMPress responds to this event by searching for the

tips in the tree corresponding to features contained within these samples and updates

the color according to the object’s attributes. The subscription mechanism also enables

users to select a node in EMPress to highlight the samples containing this node or one of

its descendant tips in EMPeror, link biplot [2] arrows in EMPeror to nodes in the tree,

highlight groups by double-clicking a category in EMPeror’s color legend, and synchronize

animated ordinations [199] by coloring the tree according to the current frame on screen.

Sharing EMPress visualizations.

When used as a QIIME 2 [18] plugin, EMPress generates visualizations in the QZV

format (which can be viewed using https://view.qiime2.org, in addition to other methods);

when used outside QIIME 2, EMPress creates visualizations as a directory (containing

an HTML file that can be opened to show the visualization). In either case, an EMPress

visualization is easily shareable with a wide audience of users who may not have EMPress

or QIIME 2 installed, for example, via uploading the visualization file(s) to GitHub or by

hosting the file(s) on any other website. We note that the ability to share visualizations is

not unique to EMPress and is also inherent to other QIIME 2 [18] plugins and in other

tree visualization tools like iTOL [104].

1.2.7 Acknowledgements

We thank members of the Knight Lab and IBM AIHL Bioinformatics team for

feedback during code reviews and presentations. We gratefully acknowledge the authors

from the originating laboratories responsible for obtaining the specimens and the sub-

32

https://view.qiime2.org

mitting laboratories where genetic sequence data were generated and shared via the

GISAID Initiative, on which a portion of this research is based; these authors are listed in

Supplemental Table S1, available online at https://doi.org/10.1128/mSystems.01216-20.

This work is partly supported by IBM Research AI through the AI Horizons

Network and the UC San Diego Center for Microbiome Innovation (to K.C., M.W.F.,

J.T.M., Q.Z., G.A., T.Z., J.G.S., A.D.S., S.J.S., Y.V.-B., and R.K.); CCF foundation no.

675191 (R.K. and P.C.D.), U19 AG063744 01 (R.K., J.M.G., and P.C.D.), CDC contract

no. 75D30120C09795 (K.G.A. and R.K.), and U19 AI135995 (K.G.A.).

K.C., Q.Z., Y.Y., J.T.M., T.Z., J.G.S., and R.K. conceived the original idea for

the project. K.C., M.W.F., G.R., D.M., A.G., S.J., M.E., Y.Y., E.S., J.T.M., G.A., T.Z.,

Q.Z., and Y.V.-B. wrote source code and/or documentation for the project. K.C., M.W.F.,

A.G., and Y.V.-B. wrote code to facilitate integration with EMPeror. L.P., H.-C.K., S.J.S.,

A.D.S., Y.V.-B., and R.K. managed the project. K.C., M.W.F., G.R., N.H., K.L.B.,

A.T., J.M.G., A.P.C., N.L.M., C.M., P.C.D., K.G.A., L.P., and Y.V.-B. analyzed and

interpreted the data sets presented in this paper. K.C., M.W.F., G.R., D.M., N.H., K.L.B.,

and Y.V.-B. contributed text to section 1.2.6, “Materials and Methods”. All the authors

contributed to the final version of the manuscript.

We declare no competing interests.

Chapter 1.2, in full, is a reprint of the material as it appears in “EMPress Enables

Tree-Guided, Interactive, and Exploratory Analyses of Multi-omic Data Sets.” Cantrell

K, Fedarko MW, Rahman G, McDonald D, Yang Y, Zaw T, Gonzalez A, Janssen S,

Estaki M, Haiminen N, Beck KL, Zhu Q, Sayyari E, Morton JT, Armstrong G, Tripathi

A, Gauglitz JM, Marotz C, Matteson NL, Martino C, Sanders JG, Carrieri AP, Song SJ,

Swafford AD, Dorrestein PC, Andersen KG, Parida L, Kim H-C, Vázquez-Baeza Y, and

Knight R. mSystems 6(2), 2021. The dissertation author was a primary investigator and

co-first author of this paper.

33

https://doi.org/10.1128/mSystems.01216-20

Chapter 2

Metagenome assembly of long and
accurate reads using iterative down-
sampling

2.1 Abstract

Long and accurate reads have revolutionized genome assembly, enabling “telomere-

to-telomere” assembly projects for a variety of genomes. Despite these advances, meta-

genome assembly remains a challenging problem; many assemblers, even those designed

specifically in the context of long and accurate metagenomic reads, produce fragmented

assemblies that omit or misrepresent real sequences in the input data. To address these

challenges we present metaLJA, a metagenome assembler based on the state-of-the-art

LJA algorithm for single-genome de Bruijn graph assembly of long and accurate reads.

metaLJA uses iterative rounds of downsampling, assembly, and graph simplification in

order to produce assemblies of groups of similar genomes within a metagenome.

2.2 Introduction

The past few decades’ refinement of sequencing technologies and assembly algorithms

has led to substantial improvements in our ability to assemble genomes—from single

genomes [139] to metagenomes [15]. The recent development of sequencing technologies

34

that can produce long and accurate reads, such as Pacific Biosciences’ high-fidelity (HiFi)

reads [210], has played a critical role in this shift. Longer reads can span additional

repetitive regions and disambiguate the assembly graph [58]; more accurate reads can

enable the more sensitive identification of whether variable positions in the assembly are

attributable to sequencing error or to real variation [125].

Even armed with long and accurate reads, however, generating accurate metagenome

assemblies remains challenging. Uneven sequencing coverage, intergenomic repeats, and

strain-level variation all add further difficulties in addition to those faced in single-genome

assembly [97, 138]. Furthermore, current benchmarking methods do not sufficiently

describe the scope of errors in metagenome assemblies; a recent study demonstrated that

multiple state-of-the-art long-read metagenome assemblers [97, 141, 48, 13] produced

outputs containing subtle errors, such as chimeric contigs and prematurely circularized

sequences [193].

In 2022 our lab published LJA [8], an assembler for long and accurate reads. By

enabling efficient construction of the de Bruijn graph [30] using large K-mer sizes, among

various other algorithmic techniques, LJA supports the automatic assembly of multiple

human chromosomes. However, LJA is designed for single-genome assembly; it struggles

to assemble metagenomic datasets, in which the coverage and ploidy of the underlying

genomes can both vary wildly.

To extend LJA to the problem of metagenome assembly we describe metaLJA, a

tool that uses LJA to approach this problem indirectly. By downsampling a metagenome

to a fraction of its reads, assembling these reads using LJA, smoothing these reads

to match the assembly, and iteratively repeating this process with larger and larger

downsamplings, metaLJA is able to reconstruct multiple complete genomes from long and

accurate metagenomic reads.

35

2.3 Results

Here we demonstrate metaLJA by applying it to two datasets of HiFi reads

sequenced from metagenomes—a mock community and a chicken gut. These datasets were

among those used as benchmarks in [48], and are useful case studies here as well.

We note that the assembly algorithms used by metaLJA are still in active develop-

ment; the results presented herein illustrate that there is substantial room for the tool to

be improved.

2.3.1 Assembly of a mock community

Assembling sequencing reads from a mock community—that is, a sample of microbes

with a known composition—provides a reasonable (albeit not comprehensive [193]) way to

evaluate the performance of a metagenome assembler. The paper introducing hifiasm-meta

[48] ran various metagenome assemblers on sequencing reads from the mock community

ATCC MSA-1003 (GenBank accession number SRR11606871), originally produced in [75].

To get a sense for how metaLJA compares with these other assemblers, we ran metaLJA

on this same dataset; Figure 2.1 visualizes the final assembly graph output by metaLJA.

Since this mock community contains 20 bacterial genomes, an ideal assembly graph

produced from these reads would consist of 20 circular contigs, each in its own connected

component of the graph (in addition to a handful of other components consisting of short

linear or circular contigs corresponding to plasmid sequences, the second chromosome of

Rhodobacter sphaeroides [184], etc.).

For the sake of brevity, we define a long circle as a connected component of the

assembly graph containing a single circular contig with length ≥ 1 Mbp. This length

threshold resembles the typical distribution of bacterial genome lengths [36]; we note that

metaLJA currently outputs homopolymer-compressed sequences, which may result in us

underreporting the number of long circles in metaLJA’s output. Erring on the side of

36

Figure 2.1. metaLJA final assembly graph of HiFi reads sequenced from the ATCC
MSA-1003 mock community [75], visualized using Bandage [212]. This mock community
is comprised of 20 genomes at varying abundances (https://web.archive.org/web/2021
1016063400/https://www.atcc.org/products/msa-1003). We note that we ran metaLJA
with whirl simplification turned off.

37

https://web.archive.org/web/20211016063400/https://www.atcc.org/products/msa-1003
https://web.archive.org/web/20211016063400/https://www.atcc.org/products/msa-1003

being conservative seems reasonable here.

metaLJA’s final assembly graph for this mock community, as shown in Figure

2.1, contains 13 long circles. This count is comprable to the outputs of other long-read

metagenome assemblers shown in [48]: hifiasm-meta [48]’s assembly graph contains 15 long

circles, and metaFlye [97]’s assembly graph contains 14 long circles. We note, however,

that the number of long circles alone is not a sufficient metric for evaluating assembly

quality—for example, the assembly graph produced by hifiasm-meta for this dataset, as

discussed in [193], is surprisingly complex (containing 10,346 nodes and 248 edges).

2.3.2 Assembly of a chicken gut metagenome

To give another view of metaLJA’s performance, we used it to assemble sequencing

reads from a chicken cecum metagenome sample (GenBank accession number SRR15214153)

[48, 217] that was also used to benchmark hifiasm-meta [48]. Figure 2.2 visualizes the

final assembly graph output by metaLJA for this dataset.

Unlike the mock community, the “ground truth” microbial composition of this

sample is not known. However, the metaLJA seems more fragmented than ideal; we note

the strangely large amount of isolated long linear sequences in its assembly. As shown in

[48], hifiasm-meta [48]’s assembly of this dataset produced 73 near-complete or > 1 Mbp

circular contigs; HiCanu [141]’s assembly produced 37 near-complete or > 1 Mbp circular

contigs; and metaFlye [97]’s assembly produced 35 near-complete or > 1 Mbp circular

contigs. By comparison, metaLJA was only able to assemble 11 long circles.

The reasons for why metaLJA’s assembly of this dataset produces so many linear

contigs are not yet clear; we suspect that metaLJA’s removal of putatively-complete

sequences from the assembly may be prematurely fragmenting later iterations’ assemblies,

causing some circular sequences to be represented only as linear contigs. We are currently

working to diagnose and address this and other issues in order to bring metaLJA up to

par with the state-of-the-art.

38

Figure 2.2. metaLJA final assembly graph of HiFi reads sequenced from a chicken cecum
metagenome [48, 217], visualized using Bandage [212]. We note that we ran metaLJA
with whirl simplification turned off.

39

2.4 Methods

2.4.1 Iterative downsampling and assembly

Given a downsampling factor D ∈ Z+, we define a D-downsampling of a set of R

reads as a random sample consisting of ⌊R/D⌋ of these reads. The metaLJA algorithm

involves repeatedly performing downsampling operations of increasing size (i.e. decreasing

D) on a metagenomic read-set, in order to produce larger and larger manageable assemblies

of the reads. (By default, metaLJA uses a fixed random seed in order to ensure that

running it multiple times will cause it to make the same D-downsamplings, at least for

the initial iteration.)

Given an initial downsampling factor (default D = 500), metaLJA’s first assembly

iteration begins by producing a D-downsampling of the input reads and assembling these

⌊R/D⌋ reads using LJA [8]. As of writing, metaLJA’s downstream steps use the compressed

de Bruijn graph output by LJA after error correction but before multiplex de Bruijn graph

construction, since the latter graph lacks easily-accessible edge coverages.

After using LJA to construct this de Bruijn graph, metaLJA then repeatedly

performs simplification operations on the graph in order to reduce its complexity (section

2.4.2). It then uses minimap2 [106] to align all R reads (potentially ignoring those marked as

“finished”; see section 2.4.4) to a subset of selected “reference” edges in the simplified graph.

Using this alignment, metaLJA identifies putatively-completely-assembled sequences from

the graph and adjusts its internal classifications of reads—including potentially smoothing

them to match the assembly—as needed (section 2.4.5).

After processing the alignment of reads to reference edges in the simplified graph,

the assembly iteration for this D-downsampling is considered complete. If D = 1 (i.e. this

iteration considered all input reads), or if no reads remain available for downsampling

(section 2.4.4), then metaLJA concludes. Otherwise, work remains to be done: metaLJA

performs a new downsampling and assembly iteration using a reduced downsampling factor

40

of ⌊D/2⌋.

2.4.2 Graph simplification

The de Bruijn graph produced from assembling a large metagenomic read-set is

often fairly complex, even after compressing non-branching paths and performing error

correction [8]. To reduce the complexity of this graph—and enable the extraction of long

contiguous sequences from it for use in alignment—metaLJA performs various simplification

operations on the graph to identify and resolve certain kinds of common structures [149],

repeating these operations until nothing remains to be simplified in the graph. Here we

briefly describe the kinds of structures metaLJA identifies and the ways in which these

structures are resolved.

Simple bulges

We define a simple bulge as a pair of vertices A and B where there exist at least

two edges A→ B. (We allow for cyclic simple bulges, i.e. those where A = B.) metaLJA

resolves a simple bulge from A to B by removing all edges A→ B except for the one with

the longest sequence. To preserve interpretability of edge coverages in the graph, metaLJA

also adds the coverage of the removed edges from this simple bulge to the coverage of the

remaining edge.

Single- and multi-edge path (SME) bulges

We define a SME bulge as a pair of vertices A and B where:

1. There exist exactly two paths from A to B.

2. One of these paths is an edge directly from A to B.

3. The other of these paths contains 2 ≤ E ≤ maxMultiEdgeCount edges (default

maxMultiEdgeCount = 10), and does not return to A.

41

4. These paths’ sequences are similar (section 2.4.3).

5. This bulge is not cyclic, i.e. A ̸= B.

metaLJA resolves a SME bulge from A to B by removing its “single-edge path”—

that is, the lone edge A→ B. As with simple bulge resolution, metaLJA adds the coverage

of this edge to the coverages of the edges along the remaining “multi-edge path” of this

SME bulge.

Simple whirls

We define a simple whirl as a pair of vertices A and B where:

1. A and B are not the only vertices in their weakly-connected component.

2. The out-degree of A is exactly one.

3. The in-degree of B is exactly one.

4. There exists exactly one edge A→ B.

5. There exists exactly one edge B → A.

6. Coverage(A→ B) > Coverage(B → A).

7. The length of the sequence defined by A→ B (including both its prefix and suffix

K-mer) is less than longSimpleWhirlRepeatLength (default 100 kbp).

metaLJA resolves a simple whirl A→ B → A using the following procedure:

1. Set Coverage(A→ B) = Coverage(A→ B)− Coverage(B → A).

2. Replace the edge B → A with a loop edge B → B representing the sequence

B → A→ B, with coverage equal to Coverage(B → A).

42

We note that conditions 2 and 3 in the definition above are important to respect,

in order to keep whirl resolution a relatively “safe” procedure that does not substantially

change the repeat structure described by the de Bruijn graph. In certain cases (as with

the mock community dataset shown in section 2.3.1) we have found that disabling whirl

simplification—even when using all conditions described above—seems to improve the

quality of metaLJA’s assemblies, resulting in the assembly of additional long circular

sequences. We are currently investigating the reasons for this phenomenon.

Non-branching paths

We define non-branching paths in the same way as maximal non-branching paths

are defined in [28]. We identify both linear non-branching paths from A to B (in which

all vertices along the path have an in-degree of one and an out-degree of one, with the

exception of A and B), and cyclic non-branching paths from A to A (in which all vertices

including A have in-degree one and out-degree one).

In both cases, we resolve these structures by replacing all edges along the path with

a single edge from starting vertex to the ending vertex of the path. We set the coverage of

this edge as the average coverage of its composite edges, weighted by their lengths.

Tips

There are many ways to define “tips” in a de Bruijn graph. To strike a reasonable

balance between preserving the structure of mostly linear components while properly

simplifying mostly circular components, we describe the following procedure for identifying

and removing tips.

Definitions.

We define the total degree of a vertex in a directed graph as the sum of this vertex’s

in-degree and out-degree.

43

We define an in-tip as an edge from A→ B where A has a total degree of one; and

we define an out-tip as an edge from A→ B where B has a total degree of one.

We define an in-terminus as a vertex with at least two incoming edges, at least one

of which is an in-tip. Similarly, we define an out-terminus as a vertex with at least two

outgoing edges, at least one of which is an out-tip.

Finally, we define a complete (incomplete) in-terminus as an in-terminus that only

(does not only) have in-tips among its incoming edges. We similarly define a complete

(incomplete) out-terminus as an out-terminus that only (does not only) have out-tips

among its outgoing edges.

Resolution.

For each complete in-terminus, remove all adjacent in-tips except the one with

the longest length; add the coverages of the removed in-tips of this terminus to the one

“preserved” in-tip. Repeat the process analogously for each complete out-terminus.

For each incomplete in-terminus (with n incoming edges that are not in-tips),

remove all adjacent in-tips and distribute the total coverage of the removed in-tips equally

(dividing this total coverage by n) to the remaining non-in-tip incoming edges. Repeat the

process analogously for each incomplete out-terminus.

2.4.3 Classifying sequences as similar or dissimilar

SME bulge resolution (section 2.4.2) can be overzealous, if done carelessly. To avoid

resolving structures consisting of two very dissimilar paths that nonetheless begin and

end in the same vertex, metaLJA only resolves a SME bulge if its path sequences appear

sufficiently similar.

The sequences of two paths in the de Bruijn graph (both starting in a vertex A

and ending in a vertex B) will by definition have the same prefix and suffix K-mers. To

account for this, metaLJA’s similarity-checking procedure extracts the inner sequences

44

(removing the prefix and suffix K nucleotides) of both paths. We refer to these inner

sequences as s1 and s2.

If both |s1| and |s2| are less than a threshold minSimilarityLength (default 100),

then we classify these sequences as similar—this case implies that these sequences are small

enough that comparing their similarity using alignment would likely be uninformative.

If at least one of |s1| or |s2| is at least minSimilarityLength, we use Edlib [181]

to align these sequences using edit distance. (If either |s1| or |s2| is 0, but the other path’s

sequence is sufficiently long, we skip alignment and classify these sequences are dissimilar.

This case can happen if the prefix and suffix K-mers of a path overlap with each other.)

We define the similarity of the Edlib alignment between s1 and s2 using the formula

Similarity(s1, s2) =
Number of match operations in Alignment(s1, s2)

max(|s1|, |s2|)

If Similarity(s1, s2) ≥ minSimilarity (default minSimilarity = 0.9), we classify s1 and

s2 as similar. Otherwise, we classify them as dissimilar.

2.4.4 The life cycle of a read

Throughout metaLJA’s algorithm, we associate each read with one of five possible

“statuses.” These classifications are stored internally as five bit arrays, and provide a

reasonably elegant way to define the current status of the assembly. Section 2.4.5 describes

the precise ways in which reads can be shifted between these statuses when metaLJA

processes the alignment of reads to reference sequences; here we describe these statuses at

a high level to clarify this process.

We label a read with the candidate status if it could be selected using downsampling

for an assembly iteration, but is not currently selected. Before the first downsampling is

performed, all reads are assigned this status.

When we perform downsampling, we assign these selected reads the unsmoothed

45

status. This is a temporary designation, indicating that these reads will be used in the

upcoming assembly as they currently are (without any smoothing being done to them).

While processing the alignment of reads to edges, we may smooth the sequence

of a read to match the assembly (and thus reduce the complexity of the next assembly

iteration). We assign such reads the smoothed status. As the name implies, these reads

are analogous to those classified as “unsmoothed”—the next assembly will be produced

from reads classified as both unsmoothed and smoothed.

If a read maps to a single reference edge in the assembly at high quality, but if this

read did not contribute to the assembly as either an unsmoothed or smoothed read, then

we assign this read the redundant status—because this read is apparently not required

to assemble the sequence to which it maps. To save time, redundant reads will not be

used in future assembly iterations; however, they will still be used in future alignments of

reads to reference edges.

The reason we still use redundant reads in future alignments is that, in a later

iteration, we may classify a reference edge as putatively complete (section 2.4.5). When we

classify a reference edge as complete, we assign all reads that map well to it the finished

status—indicating that these reads should be removed from later assembly iterations, since

we have already used them to assemble what seems like a complete sequence.

2.4.5 Identifying and analyzing “reference” edges in the graph

The boundaries of a de Bruijn graph

We define a vertex in the de Bruijn graph as a boundary vertex if it has an in-degree

of 0 or an out-degree of 0. We define the highest-coverage edge incident on a boundary

vertex as the representative edge of this boundary vertex.

Even if the representative edge of a boundary vertex is short, including this edge

in the alignment of reads to edges is beneficial: by analyzing how reads map to this edge,

we can determine if this edge (and, by extension, this component of the de Bruijn graph)

46

appears to be extendable.

Identifying reference edges

We say that an edge in the simplified de Bruijn graph is a reference edge—to which

we will align reads—if at least one of the following conditions is met:

1. This edge has a length of at least longLength nucleotides (default 100 kbp).

2. This edge is representative of a boundary vertex in the graph.

Both of these cases imply that this edge is important enough to merit inclusion in

the alignment of reads to edges for this assembly iteration.

Classifying the boundaries of a de Bruijn graph as extendable

The fragmentation of genomes into many contigs is a common problem in meta-

genome assemblies [55], to the point where many metagenome assemblers’ output graphs—

even when produced from long and accurate reads—include a large amount of short isolated

contigs. One of the fundamental tasks we worked on while developing metaLJA was study-

ing why certain circular genomes were fragmented into separate linear components of the

de Bruijn graph.

This problem raises the question, especially when assembling real metagenomic

datasets with an unknown “ground truth” microbial composition, of if the boundary

vertices (as defined above) of a de Bruijn graph can be extended. This information can be

useful both in deciding how to handle these reads during an assembly iteration (in which

we have not necessarily seen all reads in the input read-set yet) and in evaluating the

quality of an assembly.

Identifying the extending-reads of a boundary-representative edge.

Using minimap2 [106] to align reads to edges in the graph brings with it the

advantage of being able to identify “clipped” alignments—in which only part of a read is

47

mapped to a sequence [188, 193]. Here we consider situations where a clipped read coincides

almost perfectly with the end of a boundary-representative edge sequence, indicating that

this read seems to extend this boundary of the de Bruijn graph in this direction. We note

that we consider “supplementary” alignments output by minimap2, in which different

parts of a read may be aligned to multiple places, but exclude “secondary” alignments

that represent the same part of a read being mapped to multiple places [188].

We say that a linear alignment of a read to an edge sequence is start-extending if

this alignment:

1. spans at least minExtendReadSpan (default 3 kbp) on the read,

2. has percent identity of at least minWellAlignedPID (default 95%),

3. is from a suffix of the read (but not the entirety of the read),

4. begins at a 0-indexed position on this edge of less than the amount of bases clipped

from the prefix of the read, and

5. begins at a 0-indexed position on this edge of less than or equal to

maxExtendReadDistFromEnd (default 20 bp).

Conditions 1 and 2 ensure that this read’s alignment is of reasonably high quality,

and conditions 3 and 4 ensure that this read extends the prefix of this edge sequence by at

least a single base. Condition 5 adds some slight tolerance to account for the case where a

read’s alignment is not perfectly flush with the start of the edge sequence (for example,

if the read has a few mismatches near the start of the edge sequence, the more optimal

alignment may start slightly further in on the edge sequence). End-extending alignments

can be characterized analogously by adjusting the final three conditions.

Taken together, these conditions allow us to answer the question of whether or

not a read seems to extend an edge in the de Bruijn graph—and, further, to answer

48

the question of whether or not a boundary in the de Bruijn graph is supported by the

reads. Boundary-representative edges with large amounts of reads that extend this edge’s

boundary imply that this de Bruijn graph does not adequately represent the full scope of

these reads’ sequences.

Defining a boundary-representative edge as extendable.

After considering all alignments of reads to an edge, we define a boundary-

representative edge as start-extendable (end-extendable) if the number of start-extending

(end-extending) reads of this edge is at least minExtendReads (default 10). We note that

an edge can be both start-extending and end-extending, for example if it comprises an

isolated linear component of the graph.

Using extendability information.

To assist users in understanding the assembly, metaLJA’s visualizations of simplified

de Bruijn graphs annotate boundary-representative edges with information about the

number of extending reads. Additionally, isolated linear edges that are not extendable on

either side are labeled as “complete” and removed from later assembly iterations.

Classifying reference edges as complete

In our experience, even small downsamplings are often sufficient to assemble entire

genomes (or groups of similar genomes) that were present at extremely high abundance in

a sample. To save time from repeating the assembly of these genomes in later iterations,

and to prevent these genomes from introducing tangles in later iterations’ de Bruijn graphs,

metaLJA classifies certain edges in the graph as complete and removes certain reads

mapping to them from later assembly iterations.

We define an edge as complete if either of the following conditions is met:

1. This edge is a putatively-complete circular sequence: it has a length of at least

longLength nucleotides (default 100 kbp; this is the same parameter as that used in

49

section 2.4.5), it is located in an isolated weakly-connected component of the graph,

and it is circular.

2. This edge is a putatively-complete linear sequence: it is not start- or end-

extendable, it is located in an isolated weakly-connected component of the graph,

and it is linear.

metaLJA saves information about edges that have been classified as complete from

each assembly iteration; when outputting the final assembly, it “injects” these complete

edges back into the assembly graph in order to accurately represent everything that it was

able to assemble.

Processing the alignment of reads to reference edges

Read alignment is not as straightforward as mapping a single read to a single

reference sequence [188], particularly in the era of long reads [193]. Here we describe how

metaLJA adjusts read statuses (section 2.4.4) while processing the alignment of reads to

reference edges, to account for the many ways in which a read can map in practice to

these edges. Before describing this logic, we will first define some prerequisite terms that

will be useful as we process the alignment.

Well-aligned reads.

We define a read r as well-aligned to a set of edge sequences if the following

conditions are met:

1. Consistent orientations: All of r’s alignments to a single edge have consis-

tent orientations—that is, there does not exist some edge c to which both r and

ReverseComplement(r) are aligned.

2. High span: The fraction of r aligned to the edges is at least

minWellAlignedSpanFraction (default 95%).

50

3. High percent identity: The total percent identity of r’s alignments to the edges

is at least minWellAlignedPID (default 95%).

Singly-well-aligned reads.

We define a read as singly-well-aligned to an edge sequence c if the following

conditions are met:

1. Well-aligned: r is well-aligned to the set of edge sequences, as defined above.

2. Well-aligned to this single edge: The fraction of r aligned to specifically c is at

least minWellAlignedSpanFraction (default 95%).

Contributing reads.

We define a read as contributing to an assembly iteration if it was used when

running LJA, either as an unsmoothed or as a smoothed read. This is useful information

to have when determining the importance of a read in the assembly process.

Logic for processing the alignment.

Consider a single read r that has not been assigned the status of “finished.” In the

alignment of reads to reference edges:

1. If r has a single linear alignment to an edge c...

a. If r is singly-well-aligned to c...

i. If c is classified as a complete sequence...

1. Label r as a finished read: it will be removed from future assembly

iterations and associated with c.

ii. If c is not classified as a complete sequence...

1. If r contributed to this assembly iteration...

A. Label r as a smoothed read: adjust its sequence to match c, and

use this smoothed sequence in the next assembly iteration.

51

2. If r did not contribute to this assembly iteration...

A. Label r as a redundant read: it will not be used in future assembly

iterations, but it will still be used in future iterations’ alignments of

reads to edges.

b. If r is not singly-well-aligned to c...

i. If r contributed to this assembly iteration...

1. Label r as an unsmoothed read: this read maps to this edge, but it

does not map well to it. We will reuse this read in the next assembly

iteration. (If this read already contributed as an unsmoothed read in

the current iteration, it will remain unsmoothed; if this read was a

smoothed read in the current iteration, it will be switched back to an

unsmoothed read at this point.)

ii. If r did not contribute to this assembly iteration...

1. Label r as a candidate read.

2. If r has multiple linear alignments to the edges...

a. If r is singly-well-aligned to a complete sequence c...

i. Label r as a finished read: it will be removed from future assembly

iterations and associated with c.

b. If r is at least well-aligned to the edges...

i. Label r as a smoothed read, regardless of if it contributed to this iteration:

adjust its sequence to the edges to which it aligned, and use this smoothed

sequence in the next assembly iteration. Reads like this are valuable because

they can help resolve fragmented regions of the assembly.

c. If r is not well-aligned to the edges...

52

i. If r contributed to this assembly iteration...

1. Label r as an unsmoothed read.

ii. If r did not contribute to this assembly iteration...

1. Label r as a candidate read.

3. If r has zero linear alignments to the edges...

a. If r is a candidate read or a unsmoothed read...

i. Leave r as it is.

b. If r is a smoothed read...

i. Label r as an unsmoothed read.

c. If r is a redundant read...

i. Label r as a candidate read.

2.4.6 Software dependencies

metaLJA’s code directly relies on the Python packages bitarray (https://github.c

om/ilanschnell/bitarray), click (https://click.palletsprojects.com/), Edlib [181], NetworkX

[65], pyfastx [38], and pysam (https://github.com/pysam-developers/pysam), in addition

to LJA [8], minimap2 [106], SAMtools [107, 34], and seqtk (https://github.com/lh3/seqtk).

2.4.7 Software design

metaLJA’s code is implemented in Python. As of writing, metaLJA supports all

Python versions ≥ 3.6; its code is automatically tested using Python 3.6, 3.7, 3.8, 3.9,

3.10, 3.11, 3.12, and 3.13.

2.5 Discussion

We have described metaLJA, a tool that uses LJA [8] to perform assemblies of

iterative downsamplings of long and accurate reads from a metagenome.

53

https://github.com/ilanschnell/bitarray
https://github.com/ilanschnell/bitarray
https://click.palletsprojects.com/
https://github.com/pysam-developers/pysam
https://github.com/lh3/seqtk

Although this software is already straightforward to use, its results seem to lag

behind those of other metagenome assemblers. This is due in part, we suspect, to subtleties

in how metaLJA’s iterative algorithm adjusts the set of reads used at every iteration:

prematurely removing sequences that seem like complete genomes (but are really only

parts of larger genomes) could explain why metaLJA produces fragmented assemblies

of some circular genomes, since this process “punches holes” in such sequences. We are

currently investigating this phenomenon in order to improve metaLJA.

2.6 Acknowledgements

We thank Nuno Bandeira, Melissa Gymrek, Mikhail Kolmogorov, and Siavash

Mirarab for feedback and advice.

Chapter 2, in full, is a reprint of the material as it appears in “Metagenome

assembly of long and accurate reads using iterative downsampling.” Fedarko MW, Zhang

Z, Bankevich A, and Pevzner PA. In preparation. The dissertation author was the primary

investigator and first author of this paper.

54

Chapter 3

Analyzing rare mutations in meta-
genomes assembled using long and
accurate reads

3.1 Abstract

The advent of long and accurate “HiFi” reads has greatly improved our ability to

generate complete metagenome-assembled genomes (MAGs), enabling “complete metage-

nomics” studies that were nearly impossible to conduct with short reads. In particular,

HiFi reads simplify the identification and phasing of mutations in MAGs: It is increasingly

feasible to distinguish between positions that are prone to mutations and positions that

rarely ever mutate, and to identify co-occurring groups of mutations. However, the prob-

lems of identifying rare mutations in MAGs, estimating the false-discovery rate (FDR)

of these identifications, and phasing identified mutations remain open in the context of

HiFi data. We present strainFlye, a pipeline for the FDR-controlled identification and

analysis of rare mutations in MAGs assembled using HiFi reads. We show that deep HiFi

sequencing has the potential to reveal and phase tens of thousands of rare mutations in a

single MAG, identify hotspots and coldspots of these mutations, and detail MAGs’ growth

dynamics.

55

3.2 Introduction

3.2.1 Deep DNA sequencing and rare mutations

Representing a species using a “reference genome” alone is an inherently limited

approach, because any population of a species—even in an isolate [105], let alone a

metagenome—has mutations with highly variable frequencies throughout the genome. In

the past decade, deep DNA sequencing has enabled studies of diversity in cell populations

that represent a departure from the “reference genome” concept [213]. These studies’ foci

span many areas, including viral quasi-species [73], bacterial strains [192, 163, 105], cancer

evolution [57, 4], cell-free DNA [45], forensic applications [82], and somatic mutations

[171, 83].

Previous experimental evolution studies have greatly contributed to our understand-

ing of mutation rates and the emergence of novel bacterial strains [9]. However, they have

mainly focused on relatively frequent mutations (e.g., mutations with frequency exceeding

1%) in isolates rather than in metagenomes. Recent studies have shown the importance

of detecting rare mutations [192, 105, 220]: The tasks of identifying rare mutations in a

microbial population and monitoring how some of them evolve into frequent mutations

are important for understanding the dynamics of the acquisition of antibiotic resistance in

a pathogen. For example, the presence of a strain with a drug-resistant mutation with

a population frequency of 0.1%—a rare, albeit nonzero, frequency—may lead to faster

emergence of drug resistance in this population, compared with a population without a

single microbial cell carrying this mutation. However, sequencing errors in reads often

prevent the detection of rare mutations, particularly when the mutation frequency is less

than the error rate in reads [213].

Short-read DNA sequencing has greatly contributed to the detection of rare mu-

tations [164], but phasing these mutations using short reads alone remains challenging:

Short-read metagenomic studies rarely result in the complete assembly of even a single

56

metagenome-assembled genome (MAG) [140]. The recent emergence of the long and

accurate Pacific Biosciences (PacBio) high-fidelity (HiFi) reads [210] has led to the era of

“complete metagenomics” by enabling complete or nearly complete assemblies of hundreds

of MAGs from a single HiFi data set [97, 15, 93]. This shift allows fundamentally new

possibilities in the analysis of metagenomes.

3.2.2 Identifying rare mutations in metagenomic data

Any attempt to identify rare mutations must be mindful of their false-discovery

rate (FDR): the fraction of identified mutations that are false. In general, a sequencing

technology’s error rate is not a single fixed value: Error rates in reads differ depending on

many factors [213], for example nucleotide substitution types or sequence-specific errors

[135, 210]. Identifying rare mutations is therefore a difficult problem that may result in a

large FDR.

LoFreq [213] is a variant caller that has been shown to perform well for short-read

sequencing data [213, 165, 92]; however, its usual reliance on Phred quality scores limits

its applicability to HiFi sequencing data, for which Phred scores are not always available

[52]. If Phred scores are not available, LoFreq’s “LoFreq-NQ” module attempts to learn

error probabilities for the 12 nucleotide substitution types (A → C, C → A, A → G,

etc.); these error probabilities are used to inform variant calling in lieu of Phred scores

[213]. Although useful, this approach makes the assumption that the probability of a given

substitution happening owing to sequencing error—rather than real variation—remains

constant for all positions in the genome. This assumption will almost certainly be broken

in practice because the effects of a given single-nucleotide mutation vary depending on

the position at which this mutation occurs. For example, in the standard genetic code,

the mutation A → C is synonymous for the third position in the codon CTA, because

both CTA and CTC code for leucine; however, this same mutation is nonsynonymous for

the third position in the codon CAA because CAA codes for glutamine but CAC codes

57

for histidine. The probability with which we assume that A → C could happen owing to

sequencing error could thus be adjusted to account for this biological context; we contend

that knowledge about this sort of “context-dependent” information should improve the

quality of mutation identifications.

Other technology-agnostic methods besides Lo-Freq NQ, such as DeepVariant [151],

could also be applied to the problem of identifying mutations in HiFi metagenomic data;

however, there remains potential to take contextual sequence information into account, as

discussed, to further improve the algorithms used by these tools. Additionally, machine-

learning-based methods that have been trained on human sequencing data may not perform

similarly well for metagenomic data [166].

3.2.3 Simulation models of sequencing data

The MetaSim simulation model of Illumina reads [160], which was used in bench-

marking LoFreq [213], has proved to be valuable in many applications; however, it—and

other simulation models—still has some limitations. For example, extant simulation models

do not model the cross talk between wells in the patterned system on Illumina plates [205]

or dimness owing to slowly amplifying clusters (affected by insert size or GC bias). Many

bioinformaticians may not be aware about these small variations in error rates, because

they hardly affect base-calling in reference genomes; however, they nonetheless affect the

identification of rare mutations and thus make estimating the FDR of these identifications

challenging.

Developing realistic simulation models for HiFi reads represents a similar challenge

[142]. There have been recent developments on this front, including Sim-It [37] and HIsim

[134, 185]; however, we will propose an approach for estimating the FDRs of identified

mutations that can bypass the need for a simulation model and should be applicable to

arbitrary long and accurate sequencing data.

58

3.2.4 Phasing rare mutations in HiFi metagenomic data

Given a set of identified mutations in a metagenome, the next step in assembling

strains of a microbe is phasing—for example, answering the question of whether identified

mutations at N positions within a MAG represent N alternate strains of this MAG (each

with a single mutation), a single alternate strain with N mutations, or something in

between. This strain separation problem [202] is important because strains with small

genomic differences may have vastly different phenotypes: for example, although some

Escherichia coli strains are harmless, others may cause disease outbreaks [51, 202]. The

detection and phasing of rare mutations are prerequisites for numerous downstream

applications, such as monitoring rare drug-resistant subpopulations [105]. It is therefore

important to identify as many rare mutations as possible—and to determine which of them

are carried together—while simultaneously controlling the FDR of these identifications.

We define a strain as a unique haplotype supported by the available sequencing

data, an approach analogous to that taken by [138] and [202]. The field of metagenomic

phasing is still in its early stages: Although previous studies have succeeded in separating

strains at the level of individual genes or other “genomic features” [27, 111, 155, 138],

strain separation at the level of a long region or even a complete genome is not yet a

solved problem, especially for high-complexity metagenomes [202].

Even though long-read technologies promise to resolve complete genomes of strains

within a bacterial community [14, 15, 48, 176], many long-read assemblers suppress

rather than reveal small variations to achieve high assembly contiguity [100, 98, 15].

Exceptions include the metaFlye assembler [97], which includes a “strain mode” (the

--keep-haplotypes flag) aimed at strain detection, and Strainberry [202], which starts

from a “strain-oblivious” assembly and iteratively phases it to generate a “strain-aware”

assembly. A critical factor for the success of strain separation in both metaFlye and

Strainberry is the amount of variation between strains—these tools typically succeed when

59

the percent identity between the strains is below 97%–99% and when there are very few

(typically two to three) strains. Another important concern is the FDR of the identified

rare mutations, because false-positive mutations mislead strain separation tools. The

success of strain separation is thus dependent both on the reliable identification of rare

mutations and on the ability to control their FDR.

3.2.5 The strainFlye pipeline

Here we present strainFlye, a pipeline for the FDR-controlled identification, phasing,

and analysis of rare mutations in MAGs sequenced using long and accurate reads. Our

approach draws on seemingly unrelated yet very relevant prior work on estimating the FDR

of peptide identifications in proteomics. The first approach to peptide identification was

proposed in 1994 [43] and was followed by many other tools addressing the same problem.

However, it remained unclear how accurate these tools were and how to benchmark them:

The target-decoy approach (TDA) for computing the FDR of peptide identifications, which

revolutionized the field of proteomics, was introduced years afterward [129, 41, 40, 86].

Although FDR evaluation is now the requirement in proteomics, this is not the case in

studies of rare mutations in metagenomes. As accurate sequencing technologies enable

the identification of thousands of rare mutations within complete MAGs, more than can

be easily investigated manually, we believe that applying FDR estimation to this process

will become a requirement. We describe an analog of the TDA for evaluating the FDR of

identified rare mutations in a metagenome and further extend this idea by developing a

context-dependent TDA.

We show that deep HiFi-based sequencing can reveal tens of thousands of mutations

(with controlled FDR) in a MAG and that these mutations can form hotspots (that may

point to selection) and coldspots (that can be used for designing drugs targeting such

regions), and we present new methods for phasing these mutations.

60

HiFi reads

Metagenome assembly

Mutation FDR curves Phasing
Link graphs Smoothed haplotypes

 Mutation matrices Hotspots and coldspots
Codon Amino acid

Diversity Index: X1 Diversity Index: X2 Diversity Index: X3

Diversity Index: X4 Diversity Index: X5 Diversity Index: X6

Growth dynamics

Mutation spectra

Decoy

Figure 3.1. strainFlye pipeline. Given a metagenome assembly of HiFi reads, strainFlye
identifies rare mutations in each MAG, estimates their FDR, performs phasing analyses
using these mutations, identifies hotspots and coldspots of mutations, produces MAG-
specific codon and amino acid mutation matrices, and computes information about MAGs’
growth dynamics.

3.3 Results

3.3.1 Demonstrating strainFlye

Figure 3.1 illustrates the strainFlye pipeline. The only two required inputs to

strainFlye are a HiFi read-set and the contigs (in the case of metaFlye output, edge

sequences) assembled from these reads. strainFlye can also optionally take as input an

assembly graph indicating contigs’ adjacencies for use in adjusting one of the alignment

filtering steps (Appendix B.1, “Read alignment”).

To benchmark strainFlye, we used a HiFi read-set from a sheep gut metagenome

(section 3.5, “Methods”) [97, 15]. This read-set is herein referred to as “SheepGut.” We

selected this data set because it resulted in, as of writing and to our knowledge, the largest

number of complete MAGs among all metagenomic data sets analyzed so far [15]. The

data set includes 22,118,393 reads with total length 255,708,236 kbp and average length

11.6 kbp.

61

We assembled the SheepGut data set using metaFlye [97]). The resulting assembly

graph includes 78,793 edges (468 of which have lengths of at least 1 Mbp) distributed

across 45,988 weakly connected components. Appendix B.2, “Assembly graph” (Figure

B.1) provides further details about this assembly graph and how we ran metaFlye.

We classify a contig as high-coverage if its coverage is at least minCov (default

value 1000x) and long if its length is at least minLength (default value 1 Mbp). We

selected three high-coverage and long contigs from the SheepGut metaFlye assembly graph

to illustrate various steps of strainFlye’s pipeline. These three “selected MAGs” are

herein referred to as CAMP, BACT1, and BACT2, as abbreviations of their respective

Kaiju [124] taxonomic classifications: Campylobacter jejuni, Bacteria, and Bacteroidales.

Appendix B.2, “Assembly graph” (Table B.1; Figure B.2) and Appendix B.3, “Coverages

and deletion-rich positions” (Figures B.3; B.4; B.5) provide further information about

these MAGs and their coverages.

The bulk of this paper’s analyses focus on the SheepGut data set; however, we

provide a brief demonstration of strainFlye on another HiFi metagenomic data set (referred

to as “ChickenGut”) in Appendix B.4, “Demonstrating strainFlye on the ChickenGut

dataset”.

3.3.2 Computing mutation spectra

We use the term mutation spectrum to refer to the collection of mutation frequencies

across all positions in a contig. We found that applying LoFreq [213] to the large SheepGut

readset was time-consuming (Appendix B.5, “Applying LoFreq to the SheepGut dataset”).

Below we show that, in the case of HiFi reads, a simple variant calling method (herein

referred to as NaiveFreq) generates similar sets of rare mutations as LoFreq in a fraction

of the time. We limit our focus to substitution mutations because the substitution-based

error rate in HiFi reads is an order of magnitude smaller than the indel-based error rate

[210].

62

Given an alignment of reads to contigs (Appendix B.1, “Read alignment”), for each

position pos in a contig, we consider the number of reads spanning this position with a

match/mismatch operation in the alignment (spelling one of the four nucleotides A, C, G,

or T; we ignore degenerate nucleotides aligned to a position). We define the sum of the

numbers of these reads as reads(pos). We define the number of reads of the second-most

common nucleotide aligned to pos as alt(pos) (breaking ties arbitrarily).

NaiveFreq estimates the mutation frequency of pos as freq(pos) = alt(pos)
reads(pos)

; this

value is constrained to the range [0%, 50%]. Given a frequency threshold percentage

p ∈ (0%, 50%], NaiveFreq classifies a position pos as a p-mutation if freq(pos) ≥ p and if

alt(pos) ≥ minAltPos (by default, we set minAltPos = 2 because, in general, a single

read with an alternative nucleotide is an unreliable indicator of a mutation). For the sake

of simplicity, we only consider single-allelic mutations (i.e., we do not attempt to call

multiple p-mutations at a given position), although the methods proposed in this paper

could be extended to account for multiallelic mutations.

NaiveFreq is implemented in strainFlye’s pipeline in the strainFlye call

p-mutation command. On its own, NaiveFreq is not especially useful: p-mutations

represent a very primitive way of defining mutations. NaiveFreq’s utility comes from

the ease with which we can vary p to produce many sets of identified mutations for a

contig. As we will show, this property will simplify the process of generating an FDR

curve [86] that shows how an increase in the number of identified mutations impacts the

FDR estimate associated with these identifications.

3.3.3 The target-decoy approach for estimating the FDR of
identified mutations

Whether rare mutations are identified by a state-of-the-art algorithm like LoFreq

[213] or through NaiveFreq, it is important to estimate their FDR. In the absence of widely

adopted realistic simulation models of errors in HiFi reads, we propose an analog of the

63

target-decoy approach (TDA) commonly used in areas of bioinformatics without realistic

simulation models for data generation [40, 64].

In proteomics, the key idea of the TDA is to use a decoy protein database (that

has no real matches with observed mass spectra) to evaluate the FDR of spectral matches

against a real protein database [40, 86]. We contend that the FDR of identified rare

mutations in a given contig can be evaluated similarly, using a contig without any (or with

very few) real rare mutations as our decoy.

Estimating the FDR of identified mutations in a contig using the TDA necessitates

first attempting to select a decoy contig within a metagenome that does not contain any

real mutations. We can then apply a mutation identification tool to this decoy contig

(containing L positions), assume that all M identified mutations in the decoy contig are

false, and compute a mutation rate ratedecoy = M
3L

. The multiplication by three in the

denominator accounts for how there are three possible single-nucleotide mutations at each

position. Afterward, if analysis of a different (“target”) contig using the same mutation

identification tool results in a mutation rate of ratetarget (computed analogously as Mtarget

3Ltarget
),

we can estimate the FDR of the identified mutations in the target contig as
ratedecoy
ratetarget

. (We

note that our use of the term “mutation rate,” which represents the ratio of the numbers of

observed and possible mutations, differs somewhat from the commonly used definition of

the mutation rate as the number of mutations per base pair per generation—for example,

as used in [9].)

Applying the TDA in this way faces the immediate challenge that “ideal” decoy

contigs without any real mutations are unlikely to exist within a metagenome. Therefore,

the estimate
ratedecoy
ratetarget

represents an upper bound for the FDR that, depending on the

choice of decoy contig, may greatly inflate the estimated FDR. However, since our analysis

revealed great variations (by orders of magnitude) in mutation rates across various contigs

within a metagenome, we can simply select the least mutated contig and use it as a

(non-ideal but pragmatic) substitute for a decoy (section 3.5, “Methods”). We also modify

64

the standard TDA to focus our FDR estimation on “rare” mutations with frequencies

below a configurable threshold, and thus limit the effects of “indisputable” mutations on

the estimation of realistic FDRs (section 3.5, “Methods”).

We note that the TDA was initially designed to estimate FDRs in situations without

an adequate model for data generation where many unknown factors affect the fidelity

of the data. As such, the TDA is well-suited for analyzing reads with poorly understood

sources of errors—for example, cross-talk between wells in the case of Illumina reads, or

the complex derivation of accurate HiFi reads from error-prone CLR reads. We emphasize

that the target-decoy approach results in an empirical FDR estimate, rather than an exact

formula for computing the FDR. Many recent papers [64, 90, 91, 42] discuss pros and

cons of the TDA, and describe modifications of it that result in even more accurate FDR

estimates.

Similarly to how the TDA is used in proteomics (in a way that does not explicitly

address complex effects such as internal ions, etc.), our use of the TDA for analyzing rare

mutations does not explicitly address complex effects such as well-cross talk, dimness, etc.

Instead of attempting to provide some sort of confidence score for individual mutation

identifications, the TDA estimates the fraction of erroneously identified mutations “at

bulk” within a target contig without trying to investigate their specific sources [64].

3.3.4 Estimating the FDR of identified rare mutations using
the TDA

At p = 0.5%, NaiveFreq identifies 249, 17,069, and 1,632 rare (freq(pos) < 5%,

as described in section 3.5, “Methods”) p-mutations in CAMP, BACT1, and BACT2,

respectively. This illustrates that there exists a difference of nearly two orders of magnitude

in mutation rates across these MAGs (6.4× 10−5, 2.6× 10−3, and 1.9× 10−4 for CAMP,

BACT1, and BACT2, respectively). If CAMP, which has a relatively low mutation rate, is

selected as a decoy, then the FDR for BACT1 at p = 0.5% is estimated as 6.4×10−5

2.6×10−3 ≈ 2.4%

65

(Figure 3.2). For comparison, Appendix B.5, “Applying LoFreq to the SheepGut dataset”

demonstrates this estimation process using LoFreq outputs on the three selected MAGs.

Appendix B.6, “Growth of the number of p-mutations per megabase as p decreases”

(Figure B.8) illustrates how the number of p-mutations in the three selected MAGs grows

as the frequency threshold p decreases. Each value of p we use to call p-mutations implies a

mutation rate for the decoy and target contig alike; Figure 3.2 shows multiple FDR curves

[86] for eight high-diversity-index (section 3.3.7, “Diversity indices”) target contigs in the

SheepGut dataset, computed by adjusting the values of p used. The orange curves in this

figure use the entirety of CAMP as a decoy contig; the other curves use context-dependent

decoy contigs constructed from CAMP, as will be described shortly, to provide different

estimates of the FDR. Appendix B.4, “Demonstrating strainFlye on the ChickenGut

dataset” (Figure B.6) provides an analogous version of this figure for the ChickenGut

dataset.

The strainFlye fdr estimate command performs decoy contig selection and

FDR estimation; furthermore, given the resulting FDR estimates, the strainFlye fdr

fix command selects the “optimal” value of p for each target contig and filters each target

contig’s identified rare mutations to match this threshold value (section 3.5, “Methods”).

3.3.5 Context-dependent TDA

The described approach to FDR estimation, although useful, suffers from the

fact that—even in relatively-low-mutation-rate contigs like CAMP—many näıvely called

mutations represent real rather than false variations. To address this, we describe a

context-dependent target-decoy approach based on the observation that certain types of

mutations are rarer than others. Some positions in a genome are less likely to mutate

than other positions, and some specific mutations at a given position are less likely to

occur than other mutations. Thus, constructing a decoy contig consisting solely of these

relatively mutation-resistant positions and/or mutation types should result in a more

66

Figure 3.2. FDR curves for eight target contigs in SheepGut. We generate each FDR
curve by using NaiveFreq to identify p-mutations in a selected decoy contig (CAMP) as
well as the target contig, varying p from 4.99% to 0.15% in increments of 0.01%. (Top)
Demonstration of four basic decoy contexts, resulting in four FDR curves per target contig.
The “Full” context considers all mutations in all positions of the decoy contig; the “CP2”
context considers all mutations in only positions located in the second codon position of a
single predicted gene in the decoy contig; the “Tv” context only considers transversion
mutations in all positions of the decoy contig; and the “Nonsense” context only considers
single-nucleotide nonsense mutations in only positions located in a single predicted gene in
the decoy contig. (Bottom) Demonstration of ten decoy contexts, using BACT1 as the
target contig. In addition to the four contexts shown in the above plots, this includes the
“Nonsyn” context (corresponding to nonsynonymous mutations) as well as combinations of
contexts (Appendix B.8, “Nonsynonymous, nonsense, and transversion decoy contexts”).
Fixing the estimated FDR to 1% (indicated by the vertical dashed line shown in all plots)
implies a “best” (smallest) value of p for a target contig that allows calling the rarest
p-mutations while keeping the estimated FDR ≤ 1%: for BACT1, these values are listed
in the legend for each decoy context. For clarity, we circle and label certain values of p on
the “Full” curve.

67

0 1 10 100
0

10,000

20,000

30,000

edge_3030
1.92 Mbp; 1,036x

0 1 10 100
0

10,000

20,000

30,000

40,000

edge_3402
3.71 Mbp; 877x

0 1 10 100
0

10,000

20,000

30,000

edge_7356
1.6 Mbp; 743x

0 1 10 100
0

10,000

20,000

30,000

40,000

edge_7354
1.04 Mbp; 1,119x

0 1 10 100
0

10,000

20,000

30,000

edge_7349
1.18 Mbp; 1,326x

0 1 10 100
0

5,000

10,000

15,000

20,000

edge_1671
2.15 Mbp; 1,415x

0 1 10 100
0

5,000

10,000

15,000

20,000

25,000

edge_23917
1.02 Mbp; 1,988x

0 1 10 100
0

5,000

10,000

15,000

20,000

25,000

edge_11863
2.6 Mbp; 1,057x

0 1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50 60 70 80 1000.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

Estimated FDR of called rare (p < 5%) p-mutations (%),
using a log10 scale to highlight order-of-magnitude differences

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

p = 4.99%

p = 4.00%

p = 3.00%
p = 2.00%

p = 1.00%

p = 0.70% p = 0.50%

p = 0.15%
edge_1671 ("BACT1") FDR curves for 10 decoy contexts

Decoy context (CAMP) and best p for FDR 1%
CP2 (p = 0.59%)
Nonsyn (p = 0.61%)
Full [no context] (p = 0.70%)
CP2 & Tv (p = 0.65%)
Tv & Nonsyn (p = 0.61%)
Tv (p = 0.65%)
Nonsense (p = 0.72%)
Tv & Nonsense (p = 0.72%)
CP2 & Nonsense (p = 0.86%)
CP2 & Tv & Nonsense (p = 0.86%)

Nu
m

be
r o

f c
al

le
d

ra
re

 (p
<

5%
) p

-m
ut

at
io

ns
 p

er
 m

eg
ab

as
e

FDR curves for naïve p-mutation calling (p = 4.99% to p = 0.15%),
using the 8 highest-diversity-index (p = 0.5%) target contigs 1 Mbp

68

accurate FDR estimate.

Codon positions (CPs) are a simple example of this. Mutation rates vary sharply

across the first, second, and third CPs (CP1, CP2, and CP3) within protein-coding regions

of genomes [16]: In general, mutations in CP3 are less likely to change the amino acid

encoded by a codon than mutations in CP2 or, to a lesser extent, mutations in CP1.

Given predicted protein-coding genes in a data set’s contigs (section 3.5, “Methods”), we

define four “groups” of positions for each contig: first/second/third positions of codons

(CP1/CP2/CP3) and noncoding positions (positions located outside of predicted genes).

We ignore positions that are located within multiple predicted genes owing to gene overlap.

If we define MP as the number of mutated positions identified within a group of positions

P , we would expect MCP2 < MCP1 < MCP3 [16]. Figure 3.3 and Figure B.9 show that, on

the three selected MAGs, this property holds for the mutations called by NaiveFreq at

many values of p as well as for the mutations called by LoFreq. Appendix B.7, “Codon

position analysis details” presents additional information about the details of this analysis.

This result suggests that computing the decoy contig mutation rate as MCP2

3LCP2
may

yield a more realistic FDR estimate. We refer to this modification as a decoy context that

we apply to the original decoy contig; Figure 3.2 shows the use of this “CP2” decoy context

for the CAMP decoy contig, showing that it generally lowers FDR estimates compared

with using all of CAMP as a decoy contig.

Besides CPs, there exist other candidate events that show a sharp contrast be-

tween various mutation types and thus present promising options for the construction of

decoy contigs. Whether owing to selection or other vagaries of the processes by which

mutations occur, we expect nonsynonymous, nonsense, or transversion mutations to be

rarer, respectively, than synonymous, non-nonsense, or transition mutations [180, 204].

Appendix B.8, “Nonsynonymous, nonsense, and transversion decoy contexts” confirms

this (Figure B.10) and describes how strainFlye constructs decoy contexts using these

“rarer” types of mutations; Figure 3.2 includes additional FDR curves produced using decoy

69

Figure 3.3. Rare mutation frequencies vary across codon positions in the three selected
MAGs. This plot includes variant calls from LoFreq (top row) and results from NaiveFreq
for p ∈ {2%, 1%, 0.5%, 0.25%, 0.15%} (bottom rows). The expected “pattern” of codon
position mutation frequencies (MCP2 < MCP1 < MCP3) holds for all plots except for the
case of CAMP at p = 0.5% (the title for this plot is highlighted in red). As discussed in
Appendix B.5, “Applying LoFreq to the SheepGut dataset” (Figure B.7), LoFreq’s results
are similar to NaiveFreq’s at p = 2%. To focus this visualization on “rare” mutations,
we limit the mutations included in all rows (including LoFreq’s) to those located in
positions at which freq(pos) < 5% (section 3.5, “Methods”). We also treat positions
where LoFreq called multiple mutations as if only a single mutation were called at this
position (Appendix B.5, “Applying LoFreq to the SheepGut dataset”). Appendix B.7,
“Codon position analysis details” (Figure B.9) shows an alternate version of this figure, in
which y-axis values are normalized by the total number of positions considered in order to
make plots from different MAGs more easily comparable.

70

1 2 3 Non-Coding
0

5

10
7

4

11

0

CAMP: LoFreq

1 2 3 Non-Coding
0

2,500

5,000

1,487 961

6,179

1,009

BACT1: LoFreq

1 2 3 Non-Coding
0

20

40

11 8 12

48
BACT2: LoFreq

1 2 3 Non-Coding
0

5 5
3

8

1

CAMP: naïve, p = 2%

1 2 3 Non-Coding
0

5,000

1,635 1,083

6,287

1,510

BACT1: naïve, p = 2%

1 2 3 Non-Coding
0

25

50

17 12
19

52
BACT2: naïve, p = 2%

1 2 3 Non-Coding
0

10 10 9

15 14

CAMP: naïve, p = 1%

1 2 3 Non-Coding
0

5,000

10,000

2,412 1,616

9,060

2,053

BACT1: naïve, p = 1%

1 2 3 Non-Coding
0

100 67 52
74

161
BACT2: naïve, p = 1%

1 2 3 Non-Coding
0

50 50 52

82
65

CAMP: naïve, p = 0.5%

1 2 3 Non-Coding
0

5,000

10,000

2,759 1,857

10,029

2,414

BACT1: naïve, p = 0.5%

1 2 3 Non-Coding
0

200

400 366
301

426
497

BACT2: naïve, p = 0.5%

1 2 3 Non-Coding
0

200

400 404 395
479

373

CAMP: naïve, p = 0.25%

1 2 3 Non-Coding
0

5,000

10,000

4,120 3,213

12,037

3,769

BACT1: naïve, p = 0.25%

1 2 3 Non-Coding
0

1,000

2,000 1,643 1,406
1,869 2,104

BACT2: naïve, p = 0.25%

1 2 3 Non-Coding
0

1,000

2,000 1,858 1,735
2,120

1,248

CAMP: naïve, p = 0.15%

1 2 3 Non-Coding
Codon Position

0

10,000

20,000

9,004 8,330

17,535

6,840

BACT1: naïve, p = 0.15%

1 2 3 Non-Coding
0

5,000
5,546 4,998

5,838
7,096

BACT2: naïve, p = 0.15%

Nu
m

be
r o

f M
ut

at
ed

 P
os

iti
on

s

Rare mutation frequencies across codon positions

71

contexts of possible nonsynonymous, nonsense, and transversion mutations, as well as

various combinations of these contexts and the aforementioned CP2 context.

These analyses focus on p-mutations, in which mutation frequencies are used to

call a position as mutated or not. Frequencies are useful for this task because they enable

the (imperfect) comparison of positions or contigs with different coverages; Appendix B.9,

“Identifying mutations based solely on read counts” discusses an alternative method for

calling mutations based solely on read counts.

3.3.6 Codon and amino acid mutation matrices

Proteins are usually compared using the PAM [35] or BLOSUM [72] matrices, based

on frequencies of amino acid substitutions over large evolutionary distances (millions of

years). It remains unclear whether these matrices are well suited for comparing proteins

encoded by strains that are separated by short evolutionary distances. The complete

metagenomics approach [15] provides the potential to derive MAG-based analogs of these

matrices for short evolutionary distances. Moreover, it allows the extension of amino acid

substitution matrices into more informative codon substitution matrices. To illustrate

the potential of this approach, Appendix B.10, “Constructing and visualizing mutation

matrices” describes the construction of these matrices in detail and shows visualizations

of them (Figures B.11; B.12; B.13) for the three selected MAGs.

3.3.7 Diversity indices

Below we describe the diversity index that quantifies the widely varying mutation

rates across different species within a metagenome. Diversity indices are useful as a way to

select a decoy contig for use with the TDA (section 3.5, “Methods”), and the strainFlye

call p-mutation command outputs diversity indices for this reason.

We compute diversity indices relative to a given p threshold for näıvely call-

ing p-mutations. We define a position as sufficiently covered if its coverage is at least

72

minSuffCov, a threshold that is computed as a function of p (such that lower values

of p generally correspond to a larger minSuffCov). We then define the diversity index

of a contig G as the number of mutations called in the sufficiently covered positions in

G, divided by the total number of sufficiently covered positions in G (given the selected

p threshold value). Appendix B.11, “Diversity index details” provides details on these

definitions and their motivations.

We note that computing the diversity index of a complete bacterial genome in the

context of short-read metagenomics is problematic, because studies using short reads alone

struggle to assemble complete genomes; however, the emergence of complete metagenomics

[15] has opened the possibility of reconstructing many complete MAGs from a microbial

sample and thus analyzing their diversity indices. Figure 3.4 shows great variation in the

diversity indices of the MAGs in the SheepGut data set.

3.3.8 Genomic locations of mutations

Given a set of identified mutations, strainFlye supports the identification of basic

hotspots and coldspots [213, 175].

We define the mutation rate of a feature (an arbitrary region in a genome, e.g.,

a predicted gene) as the fraction of mutated positions in this region. The strainFlye

spot hot-features command takes as input a list of genomic features in contigs and

identifies “hotspot” features given simple user-specified thresholds (the minimum number

of mutations a feature must have to be considered a hotspot and/or the minimum mutation

rate a feature must have to be considered a hotspot). Appendix B.12, “Hotspot genes in

the three selected MAGs” (Table B.2) provides information about various hotspot genes

for each of the three selected MAGs.

Figure 3.5 shows the mutation spectra of the highest-mutation-rate genes of the

three selected MAGs (using NaiveFreq results at p = 0.5%). The genes shown in Figure 3.5

(top, bottom) show essentially binary splits between their positions’ mutation frequencies.

73

Figure 3.4. Diversity indices vary widely across the 468 long contigs in SheepGut. Smaller
values of p allow us to “call” increasing amounts of p-mutations in a MAG, at the cost of
requiring higher sequencing coverage to reliably distinguish these mutations from errors
(we note that this differs from ordinary usage of NaiveFreq, which does not explicitly take
coverage into account). Appendix B.11, “Diversity index details” provides details about
some of the high-diversity-index contigs shown in this figure and about how minimum
sufficient coverages are determined for each value of p (we use minReadNumber = 5 here).
The diversity index values for the three selected MAGs are highlighted on each row of the
histogram as vertical lines. Although it is shown in Figure 3.3, we have omitted p = 0.15%
from this figure because its minimum sufficient coverage is 3333.33x; the only MAG that
is sufficiently covered for this value of p is CAMP.

74

0 1 2 3 4 50.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6 4.8
0
1

10
100

p = 50%
406 sufficiently-covered contigs (minimum sufficient coverage: 10x)

CAMP
BACT1
BACT2

0 1 2 3 4 50.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6 4.8
0
1

10
100

p = 25%
267 sufficiently-covered contigs (minimum sufficient coverage: 20x)

0 1 2 3 4 50.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6 4.8
0
1

10
100

p = 10%
149 sufficiently-covered contigs (minimum sufficient coverage: 50x)

0 1 2 3 4 50.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6 4.8
0
1

10
100

p = 5%
89 sufficiently-covered contigs (minimum sufficient coverage: 100x)

0 1 2 3 4 50.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6 4.8
0
1

10
100

p = 2%
41 sufficiently-covered contigs (minimum sufficient coverage: 250x)

0 1 2 3 4 50.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6 4.8
0
1

10
100

p = 1%
22 sufficiently-covered contigs (minimum sufficient coverage: 500x)

0 1 2 3 4 50.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6 4.8
0
1

10
100

p = 0.5%
13 sufficiently-covered contigs (minimum sufficient coverage: 1,000x)

0 1 2 3 4 50.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6 4.8

Diversity index (%)
0
1

10
100

p = 0.25%
4 sufficiently-covered contigs (minimum sufficient coverage: 2,000x)

Diversity indices of the 468 contigs with lengths 1 Mbp

Nu
m

be
r o

f c
on

tig
s w

ith
 d

iv
er

sit
y

in
di

ce
s w

ith
in

 a
 g

iv
en

 ra
ng

e

75

However, the gene shown in Figure 3.5 (middle) offers a less clear interpretation: There

exist three main groups of positions with high mutation frequencies (with frequencies

∼ 1%–2%, 4%–5%, and 6%–7%) covering this gene, as well as a group of mostly unmutated

positions. Appendix B.13, “Identifying strains in the most mutated gene of BACT1”

(Figure B.15) uses long reads to inspect the structure of mutations within this gene and

analyze whether they are indeed associated with four different strains.

Appendix B.14, “Plots of mutation locations” (Figure B.16) visualizes the locations

of mutations in CAMP, BACT1, and BACT2; this visualization shows that there exist clear

“coldspot” gaps between mutations, noticeably in BACT1 (Table B.3). The strainFlye

spot cold-gaps command can identify these gaps and compute the probability of the

largest gap in a contig being of at least a certain length (Appendix B.15, “Investigating

coldspots”).

3.3.9 Growth dynamics of a metagenome

Since short-read sequencing rarely results in the assembly of complete MAGs,

methods for analyzing microbes’ growth dynamics using short-read sequencing data

[99, 85] typically rely on reference databases. By improving initial MAG completeness,

deep HiFi sequencing provides us the ability to analyze MAGs’ growth dynamics completely

de novo; Appendix B.16, “Growth dynamics” (Figure B.17) illustrates that this analysis

represents yet another benefit of “complete metagenomics.”

3.3.10 Phasing identified mutations

The ability to call many mutations with controlled FDR in a contig is essential for

phasing the strain-level haplotypes represented in this contig, because haplotype phasing

relies on the presence of reads that span multiple mutations [138]. Fortunately, long

and accurate HiFi reads simplify the process of phasing detected mutations and thus

performing strain separation.

76

1,209,000 1,209,200 1,209,400 1,209,600 1,209,800 1,210,000
0%
2%
4%
6%
8%

10%
12%
14%
16%

CAMP: Gene #1217
Left end 1,208,927, right end 1,210,075 (length 1,149 bp), strand +
Mutation spectrum ranges from 0.00% to 16.17% (average = 0.49%)

Codon Position 1
Codon Position 2
Codon Position 3

1,041,700 1,041,800 1,041,900 1,042,000 1,042,100
0%
1%
2%
3%
4%
5%
6%
7%
8%

Se
co

nd
M

os
tC

om
m

on
Nu

cle
ot

id
e

Co
un

t
M

ism
at

ch
es

+
M

at
ch

es

BACT1: Gene #868
Left end 1,041,656, right end 1,042,084 (length 429 bp), strand +

Mutation spectrum ranges from 0.00% to 8.14% (average = 0.71%)

2,798,000 2,798,200 2,798,400 2,798,600 2,798,800
Sequence position (1-indexed)

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%

BACT2: Gene #2561
Left end 2,797,869, right end 2,798,756 (length 888 bp), strand

Mutation spectrum ranges from 0.00% to 0.67% (average = 0.05%)

Mutation spectra of three highly-mutated genes

Figure 3.5. Mutation spectra of highly mutated genes in the three selected MAGs.
Each plot shows freq(pos) for every position pos within the selected gene; each of these
genes has the highest mutation rate in its parent MAG (for NaiveFreq mutation calls at
p = 0.5%) and is thus described in the corresponding MAG’s first row in B.2. We exclude
deletions from the denominator of freq(pos) (similar to most of the other analyses in
this paper), which is responsible for some of the “jumps” in the middle plot (gene 868
in BACT1). Positions are colored by their codon position within the gene, using colors
matching those in Figure 3.3. These figures are analogous to other plots of variation along
a gene sequence in the literature, for example Figure 1 in [198]. Figure B.14 in Appendix
B.12, “Hotspot genes in the three selected MAGs” visualizes the coverages of each of these
genes.

77

To reveal the conserved and diverged regions in various strains of a contig, the

strainFlye smooth module attempts to construct the de Bruijn graph [30] of these strains,

not unlike the de Bruijn graphs that are used for analyzing variations among various human

genomes [81]. Because errors in reads make this graph very complex, the first command

in this module, strainFlye smooth create, converts reads aligned to a given contig to

“smoothed reads,” which match the assembled contig at all positions except for those

positions in the read aligned to identified mutations (section 3.5, “Methods”). In addition

to smoothed reads, strainFlye smooth create also constructs “virtual reads” to fill in

low-coverage regions in contigs and maintain contiguity (section 3.5, “Methods”). The

next command, strainFlye smooth assemble, uses LJA [8] to construct the multiplex

de Bruijn graph of the collection of smoothed and virtual reads for each contig (section

3.5, “Methods”).

Figure 3.6 and Figure B.21 show visualizations of the multiplex de Bruijn graphs

produced by LJA given the smoothed and virtual reads produced for each of the three

selected MAGs. Ideally, these smoothed reads would have been assembled perfectly, such

that one isolated edge would exist for each unique haplotype. The graphs shown here do

not reach this ideal, but they come close: Many regions of these MAGs are now represented

as linear sequences of “bubbles” representing the variation between haplotypes at a given

position in the MAG.

In addition to the smooth module, strainFlye also provides the link module for

strain analysis. This module constructs a link graph representing the alleles at each

mutated position in a contig, and the frequencies with which these alleles are linked by

reads. These graphs, described in Appendix B.17, “The link graph structure for haplotype

visualization” (Figures B.18; B.19), can be helpful as a visualization tool of what regions

of a contig can be phased from the available data.

78

Figure 3.6. Multiplex de Bruijn graph produced by LJA for CAMP’s smoothed and
virtual reads. We generated smoothed reads based on mutations identified by NaiveFreq
at p = 1%. This is a MetagenomeScope visualization [46] of the GFA file produced by
LJA. Gray pentagons (nodes in this visualization) correspond to “segments” described
in this GFA file, which in turn correspond to edges in the de Bruijn graph. Blue regions
of the graph indicate “bubble” patterns MetagenomeScope identified in the graph [125],
highlighted for clarity. Segments colored in pink represent segments that are shared
between multiple bubbles: MetagenomeScope duplicates segments (creating a link between
the two copies of a duplicate segment) in order to simplify the visualization of adjacent
bubbles in the graph. This visualization makes clear that the entire de Bruijn graph
can be represented as a linear sequence of bubbles. This topology is consistent with the
expected structure of an assembly graph of multiple strains of a genome, for example, as
shown in Figure 4 of [97]; the branching paths in these bubbles likely represent strain-level
diversity. The rightmost two bubbles in the graph are shown up in a box below the
main drawing of the graph. The six dark-colored segments highlighted in the rightmost
bubble correspond to the segments that overlap gene 1217, the most mutated gene in
CAMP (Figure 3.5, top). There exist three paths through these segments’ bubbles: the
top two paths correspond to the “reference” haplotype of gene 1217 and the bottom path
corresponds to the “alternate” haplotype of gene 1217 (Appendix B.18, “Haplotypes of
the most mutated gene in CAMP”; Figure B.20). The reason for the reference haplotype
being represented by two distinct paths is that these paths cover other mutated positions
located earlier in CAMP.

79

3.4 Discussion

We have presented strainFlye, a pipeline for the identification and analysis of

rare mutations within MAGs sequenced using HiFi reads. We showed variations in the

frequencies of mutations between CPs and mutation types within MAGs, variations in

the numbers of mutations across MAGs in a data set, the identification of hotspots and

coldspots of mutations, and the ability of HiFi reads to link mutated positions throughout

large portions of MAGs.

These advances set the stage for further improvements in identifying mutations and

phasing using complementary linked read technologies, such as reads generated using Hi-C

[20] or TELL-seq technology [26]. Complementary short-read sequencing technologies,

as well, hold promise for further improving our confidence in the identification of rare

mutations [15, 119].

We note that the methodologies developed here could have uses not only in isolation

but also as extensions to existing tools for variant calling and metagenomic data analysis.

Recent work on optimizing LoFreq in the context of high-coverage viral data sets [92]

has highlighted the potential for the community to continue to refine existing methods to

handle the ever-increasing challenges associated with new types of data.

Although HiFi reads simplify many tasks in metagenomic data analysis, there

remain countless open problems. One such problem is the study of lethal positions: A

bacterial gene is classified as lethal (nonlethal) if its deletion allows (does not allow) an

organism to survive under some defined conditions [214]. Although identification of all

lethal SNVs in a bacterial genome provides much more information than identification of

all lethal genes [215], finding these mutations remains an open problem. Moreover, even

the simpler problem of identifying a large set of nonlethal mutations in a bacterial genome

remains an open problem. Information about such sets is valuable because it can inform

various studies, for example, analyses of positions in a genome that lead to antibiotic

80

resistance [105].

We have shown the possibility of revealing tens of thousands of putatively nonlethal

mutations in multiple MAGs in SheepGut (Figure 3.2) using deep metagenomic sequencing.

Even though this example represents—for any of these MAGs alone, to our knowledge—

the largest collection of rare mutations in a bacterial genome reported to date, the true

extent of diversity in a bacterial community (when the frequency threshold is reduced and

the coverage increases by an order of magnitude) remains unknown. Future “ultradeep”

sequencing projects (e.g., with coverages as large as 100,000x) may shed light on this

question and narrow the set of lethal mutations in bacterial genomes.

3.5 Methods

3.5.1 Automatically selecting a decoy contig

In the SheepGut data set, CAMP serves as a long high-coverage decoy contig with

relatively few rare mutations (Figures 3.3; 3.4) However, there is no guarantee that such

a contig will exist in an arbitrary data set. The strainFlye fdr estimate command

allows the user to automatically select (or to specify) a decoy contig.

To automatically select a decoy contig, strainFlye first identifies the set of all long

high-coverage contigs (section 3.3.1, “Demonstrating strainFlye”). If this set is empty,

strainFlye will raise an error explaining the situation to the user; this situation implies

that the user will need to lower the minLength and minCov thresholds in order to find a

decoy contig. If this set consists of a single contig, strainFlye will select it as the decoy.

If there are n long high-coverage contigs, strainFlye makes use of diversity index

information computed for a set D of various values of the frequency threshold p (section

3.3.7, “Diversity indices”). Each entry in D implies an n-dimensional vector of diversity

indices computed for this threshold value (with one entry for each long high-coverage

contig). Because the diversity index can be undefined for low-coverage contigs, depending

81

on the minimum sufficient coverage for the corresponding value of p (Figure 3.4; Appendix

B.11, “Diversity index details”), strainFlye focuses only on the Dgood ⊆ D threshold

values for which at least two long high-coverage contigs have defined diversity indices.

If |Dgood| = 0, that is, no vector of diversity indices has at least two long high-coverage

contigs with defined diversity indices, strainFlye raises an error explaining the situation to

the user.

If |Dgood| ≥ 1, then, for each of the corresponding “good” vectors of diversity

indices, strainFlye finds the minimum and maximum diversity index across the long

high-coverage contigs. It then assigns each of these contigs a score in the range [0, 1] using

linear interpolation: The contig with the lowest diversity index in this vector is assigned a

score of zero, the contig with the highest diversity index in this vector is assigned a score

of one, and all other contigs with defined diversity indices are scaled in between. Contigs

in this vector with an undefined diversity index are assigned a score of one in order to

penalize them for not being sufficiently covered.

Finally, strainFlye computes a total score for each long high-coverage contig by

summing its scores for each of the |Dgood| diversity index vectors. The contig with the

lowest total score is selected as the decoy contig, breaking ties arbitrarily.

We note that there is no guarantee that any of the long high-coverage contigs will

have a “low” amount of rare mutations; it may be the case that all of these contigs have

high diversity indices. In this case, the automatic selection process will select a decoy

contig with a relatively high mutation rate, and strainFlye will thus produce inflated FDR

estimates. This is an inherent downside of the TDA; however, we expect that the rising

sizes of sequencing data sets will increase the likelihood of suitable decoy contigs existing.

3.5.2 Accounting for indisputable mutations

We classify a p-mutation as indisputable if its mutation rate freq(pos) (defined in

the section 3.3.2, “Computing mutation spectra”) is greater than or equal to a specified

82

highFrequency threshold (default value 5%) and as a rare mutation otherwise. Although

the reliable identification of rare mutations (with frequencies below the error rate in reads)

is a challenging task, nearly all indisputable mutations are real, especially in high-coverage

MAGs like those studied in this paper. When computing the mutation rates of a decoy

or target contig G (with MG mutations and length LG), as discussed in the section 3.3.3,

“The target-decoy approach for estimating the FDR of identified mutations”, we thus

redefine rateG = Mrare

3LG
, where Mrare is the number of rare mutations in the contig. This

modification can lower the computed mutation rates for a given contig and thus result in

more realistic FDR estimates.

3.5.3 Fixing the estimated FDR of identified rare mutations in
a target contig

We have described how to use the TDA to estimate the FDR of a set of identified

rare mutations in a contig and to draw an FDR curve for this contig. Given a user-

configurable upper bound f on the estimated FDR of rare mutation identifications (e.g.,

f = 1%, as shown in Figure 3.2), the strainFlye fdr fix command can fix the estimated

FDR for a target contig to be ≤ f as follows.

First, we select the lowest value of p at which the estimated FDR for this contig is

≤ f . Because our FDR estimates do not necessarily increase monotonically as p decreases

(Figure 3.2), the vertical line implied by fixing the FDR to a given upper bound may

be crossed by a target contig’s FDR curve multiple times [86]. However, the number of

mutations per megabase produced by a given p value in the target contig does increase

monotonically as p decreases. Because of this, the lowest threshold value yielding an

acceptable estimated FDR corresponds to the largest set of rare mutations for this target

contig with an acceptable estimated FDR.

Because we have assumed that all “indisputable” mutations (section 3.5, “Methods”)

are correct, strainFlye outputs—for each target contig—the set of all rare mutations

83

supported by the “optimal” value of p selected, as well as the set of all indisputable

mutations. strainFlye also outputs the set of all indisputable mutations within the decoy

contig, although it does not output any rare mutations from the decoy contig (as of writing,

this is performed regardless of the decoy context used). These mutations can be used as

the starting point for downstream analyses (e.g., phasing).

We note that, for p-mutations, the level of granularity used in varying p can have

an impact on the selection of this “optimal” value. strainFlye’s pipeline adjusts p in

increments of 0.01% (Figure 3.2; B.8), which we expect should be sufficient for most

current data sets.

3.5.4 Predicting protein-coding genes in contigs

Many of the described “decoy contexts” in section 3.3.5, “Context-dependent TDA”,

as well as many of the other shown analyses, rely on the availability of gene predictions:

We compute these using Prodigal [80]. Notably, we use Prodigal’s -c option in order to

disallow the prediction of incomplete genes that run off the end of a contig; this restriction

simplifies these analyses. For the three selected SheepGut MAGs shown in this paper, we

ran Prodigal in its “normal” or “single” mode (processing one contig at a time): This

matches the behavior of strainFlye fdr estimate when the decoy context(s) requested

by a user requires gene predictions in the decoy contig.

We note that our use of Prodigal makes the implicit assumption that the contigs

on which we run it are prokaryotic. It should be feasible to extend our analyses to work

with alternative gene prediction tools if desired, although for now we have focused our

efforts on analyzing prokaryotic contigs.

3.5.5 Constructing smoothed reads

Given a set of identified mutations in a contig, and a read aligned to this contig,

we identify all mutated positions in the contig to which a linear alignment of this read has

84

(mis)match operations. We then convert each linear alignment of this read to the contig

into a “smoothed read” that completely matches the contig, with the exception of the

read’s nucleotides at all identified mutated positions spanned by the alignment.

This process involves some simplifying assumptions: For one, it necessarily ignores

both indels and non-“identified” single-nucleotide mutations. If a read’s nucleotide at

any of the identified mutated positions to which it has a (mis)match operation does not

match the “reference” or “alternate” nucleotide at this position (in the case of mutations

identified by NaiveFreq, these two will always correspond to the first- and second-most

common nucleotide at a position), then we discard this alignment of this read and do not

generate a smoothed read from it. This operation implicitly ignores the contig’s “reference”

nucleotide at this mutated position, so there is the (unlikely) possibility for the reference

nucleotide at an “unreasonable” position (where the reference and consensus nucleotide

disagree) (for discussion, see Appendix B.12, “Hotspot genes in the three selected MAGs”)

to be completely unrepresented in the smoothed reads if it is not the “reference” or

“alternate” nucleotide at a mutated position. Similarly, if a read spans a mutated position

with a deletion, we discard this alignment of this read.

We note that these “discarding” steps are only applied to individual linear align-

ments of a read at a time; for example, a read with two linear alignments (one “representa-

tive,” one supplementary) (https://samtools.github.io/hts-specs/SAMv1.pdf) to a contig

could result in the creation of zero, one, or two smoothed reads for this contig. The input

alignment file should not contain any secondary alignments or overlapping supplementary

alignments on a contig (Appendix B.1, “Read alignment”) so, even if a single read is

converted to multiple smoothed reads in a contig, these smoothed reads should all cover

disjoint regions within the contig.

This can lead to the generation of smaller haplotype assembly graphs than may be

expected, because we effectively ignore haplotypes that disagree with any of the identified

mutations in a contig. This is a likely factor in why the BACT1 assembly graph (shown

85

https://samtools.github.io/hts-specs/SAMv1.pdf

in Figure B.21 in Appendix B.19, “Smoothed haplotype assembly graphs”) is simple

compared with the CAMP and BACT2 assembly graphs: Similar to how BACT1 has an

order of magnitude more p = 1% mutations (22,415) than CAMP (83) and BACT2 (380),

BACT1 has an order of magnitude more p = 1% mutations with at least one deletion in

their pileup (8269 / 22,415) compared with CAMP (57 / 83) and BACT2 (274 / 380).

This results in a comparatively large number of reads being discarded when attempting to

generate smoothed haplotypes for BACT1.

Finally, we note that this process also splits supplementary alignments of a single

read into distinct smoothed reads because it is unclear how to produce a single smoothed

read from a read that has multiple alignments to a contig. However, because of the filtering

of overlapping supplemental alignments described in Appendix B.1, “Read alignment”

these distinct smoothed reads should not overlap with each other on a contig.

3.5.6 Constructing virtual reads

Assembly and/or alignment artifacts can lead to certain positions in a MAG having

relatively low coverage. These coverage drops—for example, the drops shown in Appendix

B.3, “Coverages and deletion-rich positions”—complicate the assembly of haplotypes

of these nonetheless already-assembled MAGs. Positions without any coverage at all

will split the resulting de Bruijn graph, and positions with low coverage can still result

in discontiguous assemblies owing to assemblers treating these regions’ corresponding

smoothed reads as erroneous. To address this problem, we create virtual reads that can

span uncovered or low-coverage positions in a MAG. We note that the term “virtual reads”

is used in a similar context in [8].

Consider a MAG with average coverage Cm, defining the coverage at each position

only based on the number of matching and mismatching reads in the input alignment

(ignoring deletions). We define a position with coverage (based only on smoothed reads)

Cp in this MAG as low-coverage if Cp < minWellCovFrac ·Cm, where minWellCovFrac

86

is a percentage in the range [0%, 100%] (default value 95%). We chose this default value

based on testing LJA with the smoothed and virtual reads constructed from CAMP until

the resulting assembly became contiguous, as is shown in Figure 3.6. To construct virtual

reads, we identify all “runs” of consecutive low-coverage positions in the MAG. For each of

these runs, we define its average coverage as Cr. We then create a virtual read that matches

the MAG “reference” sequence at all positions throughout this run, as well as vrF lank

(default value 100) positions before and after the start and end of the run (clamping to

the start or end of the MAG as needed, in case the run is close to a boundary of the

MAG). Finally, we generate round(Cm − Cr) copies of this virtual read in order to “lift”

the coverage throughout this run of low-coverage positions to roughly match Cm.

Like the construction of smoothed reads, the construction of virtual reads also

involves making some concessions; for example, in the case in which an identified mutation

occurs within a virtual read or its flanking vrF lank positions, we simply set the virtual

read’s nucleotide at this mutated position equal to the MAG reference. Or, in strange

circumstances, the flanking positions in the virtual reads created for a low-coverage region

might overlap the virtual reads generated for other nearby low-coverage regions. These

artifacts may cause undesirable effects in the haplotype assembly process. We have

nonetheless found that using virtual reads, in addition to just smoothed reads, helps

improve the contiguity of the multiplex de Bruijn graphs produced by LJA.

Lastly, we note that we do not construct virtual reads that connect the end and

start of a MAG, even if this MAG is represented in the original assembly graph as a

single circular contig (e.g., as BACT1 and BACT2 are). Although this can have the effect

of linearizing circular contigs, we expect that this should not make a large difference in

downstream analyses using the resulting smoothed haplotypes.

87

3.5.7 Assembling smoothed and virtual reads

After constructing smoothed and virtual reads, the strainFlye smooth assemble

command provides these reads as input to LJA, an assembler designed for HiFi reads [8].

We run LJA without its error correction (mowerDBG) step; instead, we apply a simple

k-mer coverage filter that removes very-low-coverage edges from the initial de Bruijn graph

generated by LJA’s jumboDBG tool. This method of running LJA is compared against

other assembly methods and discussed in detail in Appendix B.18, “Haplotypes of the

most mutated gene in CAMP”.

3.5.8 Data sets

The SheepGut read-set is available at the NCBI BioProject database (https:

//www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA595610. We used

the HiFi sequencing data from accession IDs SRX7628648 and SRX10647529, in particular.

We note that although there exists additional Hi-C and Illumina short-read sequencing

data for SheepGut [15], we have only made use of the HiFi data (from the two accession

IDs given above) in this paper.

To simplify reproduction of our analyses, we have also made the metaFlye assembly

graph produced for the SheepGut data set (Appendix B.2, “Assembly graph”), which

represents a starting point for the analyses shown in this paper, available on Zenodo

(https://doi.org/10.5281/zenodo.6545141).

The chicken gut metagenome read-set is available at the NCBI Sequence Read

Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) under accession number SRR15214153.

We retrieved the hifiasm-meta [48] assembly of this data set produced by [48] from Zenodo

(https://doi.org/10.5281/zenodo.6330282).

88

https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://doi.org/10.5281/zenodo.6545141
https://www.ncbi.nlm.nih.gov/sra
https://doi.org/10.5281/zenodo.6330282

3.5.9 Software dependencies

The strainFlye pipeline is implemented as a Python 3 command-line tool. The

pipeline code directly relies on pysam (https://github.com/pysam-developers/pysam),

pysamstats (https://github.com/alimanfoo/pysamstats), scikit-bio (http://scikit-bio.org),

NetworkX [65], pandas [211, 143], click (https://click.palletsprojects.com/), NumPy [196],

SciPy [203], SAMtools [107, 34], BCFtools [34], minimap2 [106], Prodigal [80], and LJA

[8].

The analyses shown throughout this paper (including Bash scripts, Python 3

scripts, and Jupyter notebooks) [95] additionally make use of metaFlye [97], CheckM

[145], barrnap [173], the SRA toolkit (https://github.com/ncbi/sra-tools), LoFreq

[213], the Integrative Genomics Viewer (IGV) [190], Bandage [212], MetagenomeScope

[46], Jupyter [95], nbconvert (https://nbconvert.readthedocs.io), scikit-learn [147],

matplotlib [78], Logomaker [187], and the neato [53] and sfdp [76] layout methods in

Graphviz [54]. We installed software primarily using conda (https://conda.io), mamba

(https://mamba.readthedocs.io), and pip (https://pip.pypa.io).

Finally, we note that we produced Figure 3.1 using LibreOffice Draw (https:

//www.libreoffice.org/discover/draw/) and GIMP (https://www.gimp.org/). We produced

the example link graphs shown within this figure, in particular, using Graphviz’ [54]

neato [53] layout method. We also modified the MetagenomeScope visualization of a

multiplex de Bruijn graph shown in Figure 3.6 using LibreOffice Draw, in order to add a

box highlighting a region of the graph.

3.5.10 Software availability

strainFlye’s code is available on GitHub (https://github.com/fedarko/strainFlye)

and as Supplemental Code S1, available online at https://www.genome.org/cgi/doi/10.11

01/gr.276917.122. Additional ad hoc code for performing the analyses shown in this paper

89

https://github.com/pysam-developers/pysam
https://github.com/alimanfoo/pysamstats
http://scikit-bio.org
https://click.palletsprojects.com/
https://github.com/ncbi/sra-tools
https://nbconvert.readthedocs.io
https://conda.io
https://mamba.readthedocs.io
https://pip.pypa.io
https://www.libreoffice.org/discover/draw/
https://www.libreoffice.org/discover/draw/
https://www.gimp.org/
https://github.com/fedarko/strainFlye
https://www.genome.org/cgi/doi/10.1101/gr.276917.122
https://www.genome.org/cgi/doi/10.1101/gr.276917.122

is available on GitHub (https://github.com/fedarko/sheepgut) and as Supplemental Code

S2, available online at https://www.genome.org/cgi/doi/10.1101/gr.276917.122.

3.6 Competing interest statement

The authors declare no competing interests.

3.7 Acknowledgements

We thank the editor and anonymous reviewers for their feedback. We thank

Andrey Bzikadze for initial exploration of the TDA and context-dependent TDA in the

case of short-read sequencing. We thank Nuno Bandeira for detailed feedback, including

bringing the possibility of pseudogenes impacting these analyses to our attention. We

thank Anton Bankevich for help with applying LJA [8] to haplotype assembly. We

acknowledge Nicholas Bokulich for bringing Figure 1 of [198] to our attention: https:

//forum.qiime2.org/t/9061/13. We thank Lee Katz and Kai Blin for advice on parsing

gene prediction data. We thank Heng Li for answering questions about minimap2. We

thank Andrei Osterman and Semen Leyn for helpful discussions and advice on analyzing

the SheepGut data set, including alignment filtering and interpretation of variation in

CAMP. M.W.F. thanks Alex Richter for bringing the Ka and Ks values to his attention.

The rainbow colorscheme used in Figure 3.2 was partially inspired by Figure 2 of [40].

This work was partly supported by IBM Research AI through the AI Horizons Network

and the UC San Diego Center for Microbiome Innovation (to M.W.F.); and by National

Institutes of Health Common Fund Award, National Institute of Diabetes and Digestive

and Kidney Diseases, U24DK131617-01.

Chapter 3, in full, is a reprint of the material as it appears in “Analyzing rare

mutations in metagenomes assembled using long and accurate reads.” Fedarko MW,

Kolmogorov M, and Pevzner PA. Genome Research 32(11-12), 2022. The dissertation

90

https://github.com/fedarko/sheepgut
https://www.genome.org/cgi/doi/10.1101/gr.276917.122
https://forum.qiime2.org/t/9061/13
https://forum.qiime2.org/t/9061/13

author was the primary investigator and first author of this paper.

91

Chapter 4

Efficient creation and visualization
of exact dot plot matrices

4.1 Abstract

Dot plots, which represent matches between two sequences, are popular visual-

ization methods for comparing sequences. The underlying matrix represented by a dot

plot, describing every k-mer shared between two sequences, can also have use besides

visualization—for example, in identifying synteny blocks, which typically manifest as

diagonal clusters of matching k-mers. However, many dot plot visualization tools do not

provide easy programmatic access to this matrix. In some cases this is attributable to the

fact that these tools do not actually create the “true” dot plot matrix: instead, many tools

attempt to reduce time or space requirements by creating an approximate representation of

this matrix (for example, by only identifying the most “significant” matches). Furthermore:

often we wish to display many dot plot visualizations in a single figure. This sort of figure,

in which many dot plots are “tiled” in a grid, can be useful for showing a high-level visual

overview of the similarities between many pairs of sequences (for example, the legs of bulges

in an assembly graph). Generating each of the dot plots in such a figure, and combining

these plots into a larger figure, is cumbersome to do using graphical-user-interface-based

dot plot tools alone. A programmatic interface for creating many dot plots and organizing

them into a larger figure would be helpful to improve the speed and reproducibility of this

92

process. To enable exact dot plot matrix construction and programmatic access—and to

expedite the process of constructing complex figures consisting of many dot plots tiled

together—I present wotplot, a well-tested and easy-to-use Python library that satisfies

these needs.

4.2 Introduction

4.2.1 Motivation

Since their introduction in 1970 [59], dot plots have become a valuable visualization

method for comparing sequences. Dot plots have been used to identify synteny blocks [148],

visualize the repeat structure of highly-reptitive genomic regions [21, 219], and compare

strains of bacterial genomes [33], among myriad other tasks.

Dot plots are also often used to characterize genomic inversions [25]; these diagrams

reveal differences between “canonical” inversions and other inversion-like structures that

can lead to false positive inversion identifications, such as inverted duplications and inverted

repeats. During in-progress research on developing a method for identifying microinversions

[25] from the bulges of a de Bruijn graph [30], I needed a tool that could provide access to

the exact dot plot matrix between two sequences (for performing filtering and clustering

on reverse-complementary matches) and visualize many dot plots at once (in order to

facilitate quick manual evaluation of many bulges’ putative microinversions at once). I

was unable to find any software packages which met these needs; this led me to create

wotplot, the tool described here.

4.2.2 Related work

A variety of other tools have been developed for the visualization of dot plots; here

I briefly examine and compare some of these tools with the proposed approach, using a

laptop with 8 GB of RAM as a test machine. Although performance (i.e. the time required

93

to generate a dot plot) was not my main goal in the development of wotplot, I use the

example of comparing two strains of E. coli (shown in Figure 4.1) as a simple informal

benchmark for evaluating how fast these tools are at producing a single dot plot of two

bacterial genomes. For reference, wotplot can create and visualize this dot plot—using

k = 20—in roughly 36 seconds on this machine.

Gepard [101] can visualize dot plots of large sequences; like wotplot, it supports the

use of suffix arrays to speed up match detection [112]. Using Gepard to create a dot plot of

the two E. coli strains shown in Figure 4.1, using a “word length” of 20, runs faster than

wotplot on this example—Gepard takes about 18 seconds. However, Gepard does not seem

to provide access to the resulting dot plot matrices, rendering the tool infeasible for analyses

where the exact output matrix is needed. Additionally, combining dot plot visualizations

produced by Gepard’s graphical user interface is somewhat cumbersome; Gepard does have

a command-line interface available that makes this task easier to automate, but each of

the plots output by Gepard appear to unavoidably include long descriptions of parameters

embedded in the figures themselves, which is often undesirable when tiling many dot plots

into a single figure. Finally, Gepard struggles to visualize dot plots of relatively small

sequences legibly; comparing two 18-nucleotide sequences from an example figure in [28],

for example, results in an extremely small plot that cannot apparently be enlarged within

Gepard or using any of its parameters.

FlexiDot [174] contains a wide variety of options for creating tiled grids of dot plots.

However, like Gepard, FlexiDot—as of the current latest version, 2.0.1—does not seem

to provide access to the resulting dot plot matrices. FlexiDot version 1.06 (the newest

version available from April 14, 2019 until May 21, 2025) did not seem to scale well to

the visualization of large sequences; using FlexiDot version 1.0.6 to construct the k = 20

dot plot of the two E. coli strains shown in Figure 4.1 ran for over ten minutes before I

killed the process. Notably, newer versions of FlexiDot have been released in recent weeks

that make the tool more efficient; FlexiDot version 2.0.1 is able to create a dot plot of the

94

two E. coli strains shown in Figure 4.1 (using parameters -k 20 -c -m 1) in about 41

seconds, which is now only slightly slower than wotplot.

ModDotPlot [186] also supports many visualization options, including the creation

of tiled grids of dot plots. Although the tool is designed for the interactive visualization

of dot plots (e.g. by zooming in on repetitive regions), it also supports the generation of

static plots, like wotplot. The tool uses “modimizers” to speed up the process of sequence

comparison; using it to generate a static plot comparing the two E. coli strains shown in

Figure 4.1 (using a k-mer size of 20) takes about 55 seconds, which is slightly slower than

wotplot. Although ModDotPlot is quite useful, particularly for interactive visualization, its

output heatmaps are not perfectly comparable to exact dot plots (where “dots” correspond

only to exact k-mer matches, given a fixed value of k). Additionally, the tool does not

support short input sequences; it has been recommended that it is used only for input

sequences greater than 10 kbp long (https://github.com/marbl/ModDotPlot/issues/30),

which is an undesirable constraint for arbitrary dot plot visualization. (As shown in Figure

4b of [97], many bubbles in metagenome assembly graphs have lengths less than 10 kbp.)

These points aside, it is worth noting that ModDotPlot can write out information about

the similarities it identifies to a BED file [156], which could then be converted to a matrix

format. This seems to be a unique feature among the tools surveyed here.

Many useful tools for dot plot visualization exist, including and beyond the three

described above. However, none of the tools I could find met the exact needs I had. Next

I will describe wotplot, the tool I created to address these needs.

4.3 Results

4.3.1 Creating exact dot plots of long sequences

Figure 4.1 shows a dot plot produced by wotplot comparing the genomes of two

Escherichia coli strains: the model organism E. coli K-12 [161] and the pathogenic strain

95

https://github.com/marbl/ModDotPlot/issues/30

E. coli O157:H7 [71]. Comparing these genomes at this high level demonstrates that,

although these strains’ genomes are broadly similar (as indicated by the red diagonal line

of forward matches spanning the plot), the O157:H7 strain’s genome contains numerous

insertions relative to the K-12 strain’s genome (indicated by areas where the red diagonal

line “jumps” to the right). This figure, which can be created in roughly 36 seconds on a

laptop with 8 GB of RAM, demonstrates wotplot’s ability to create and visualize exact

dot plot matrices comparing entire bacterial genomes on a laptop computer.

Beyond the fast generation of exact dot plots, I note that the DotPlotMatrix object

produced by wotplot (containing a sparse representation of all k-mer matches between the

input sequences) is an ordinary Python object that can be written to disk using Python’s

built-in pickle module. These matrices can thus be analyzed and visualized any time

after they have been created, without needing to recompute them.

4.3.2 Visualizing multiple dot plots in a single figure

wotplot facilitates the rapid visual comparison of multiple sequences—for example,

pairs of contigs from a metagenome assembly that have been binned together, or pairs of

bulge sequences from an assembly graph. One of the main reasons I created this library

was to simplify the process of creating a “grid figure” containing many dot plots.

wotplot’s default visualization functions directly use matplotlib [78], which provides

utilities for creating figures of subplots arranged in a variety of layouts. This integration

enables the programmatic creation of complex grid figures of many dot plots. As a simple

example of this, Figure 4.2 uses wotplot and matplotlib to create a grid figure showing an

all-versus-all comparison of five random sequences.

96

Figure 4.1. Exact k = 20 dot plot comparing the genomes of Escherichia coli O157:H7
(x-axis) and Escherichia coli K-12 (y-axis), analogous to the plot shown in Figure 2a
of [71]. Every visible dot in the matrix represents the occurrence of a 20-mer that is
present in both genomes. Red dots correspond to forward matches, blue dots correspond
to reverse-complementary matches, and purple dots correspond to palindromic matches.
wotplot can generate this figure in roughly 36 seconds on a laptop with 8 GB of RAM.
Note that, to simplify comparison, I did not include the two plasmid sequences of the
O157:H7 strain in this figure.

97

Figure 4.2. All-versus-all dot plot comparisons of five random sequences. I generated
five random sequences (each with a length randomly chosen from the range [500, 2000]),
and used wotplot and matplotlib [78] to create and visualize a grid of k = 7 dot plots
comparing each pair of these sequences. Each sequence takes up its own row and column
of the grid; since the grid is symmetric about the diagonal (the dot plot of sequences A
and B is equivalent to a rotated version of the dot plot of B and A), I have only drawn the
upper triangle of this grid. Since each sequence perfectly matches itself, the self-dot-plots
comparing sequences with themselves (shown on the diagonal of this figure) have clear
red diagonal lines throughout indicating perfect forward matches. The “off-diagonal” dot
plots do not display this pattern.

98

99

4.4 Methods

4.4.1 Space-efficient matrix storage

A näıve implementation of dot plot matrix construction will become impractical

for large sequences, because the space required to store the “full” dot plot matrix of two

sequences of lengths m and n is O(mn).

Say we wish to construct the dot plot matrix of two Escherichia coli strains’

genomes—for example, between E. coli K-12 [161] and E. coli O157:H7 [71], as shown

in Figure 4.1. Even if we make the unrealistically low assumption that every cell in the

matrix takes up only a single bit of storage, storing the full dot plot matrix of these two

genomes (of lengths 4.64 Mbp and 5.50 Mbp, respectively) would require roughly 3.19

terabytes. Provisioning this amount of memory is infeasible on most modern computers.

To address this problem wotplot uses SciPy [203] to store the dot plot matrix in

sparse format, which only requires the storage of information about nonzero (i.e. match)

cells in the matrix. Most dot plot matrices (using sufficiently large k-mer sizes) are

extremely sparse, so storing these matrices in a sparse format greatly reduces their space

requirements: there are 3,536,693 nonzero cells in the k = 20 dot plot matrix of E. coli

K-12 vs. E. coli O157:H7, meaning that this matrix is 99.999986% sparse. If we again

assume that each stored entry in this matrix takes up one bit of storage, then the sparse

matrix now requires only 442.09 kilobytes—a much more feasible amount of memory. (In

practice, we can use Python’s pickle module to write the dot plot matrix object for

this example to disk. The resulting file is approximately 66.73 megabytes, which is still

relatively small.)

4.4.2 Space- and time-efficient identification of shared k-mers

Using a sparse representation reduces the space requirements of our constructed dot

plot matrix, but the process of actually constructing this matrix (based on the locations of

100

all pairs of shared k-mers between the two input sequences) remains a potential performance

bottleneck.

We could compute this information using a simple quadratic approach, in which

every k-mer in one sequence (of length m) is explicitly compared with every k-mer in the

other sequence (of length n). However, the O(mn) time requirements of such a solution

are impractical for large sequences.

These prohibitive time requirements can be reduced by precomputing information

about the k-mers present in the sequences and using this information to speed up the

computation of the dot plot matrix [29]. However, this can lead to impractical space

requirements: for example, näıvely storing all k-mers in one sequence (of total length n)

and these k-mers’ locations requires that—in the worst-case scenario (where every k-mer

in the sequence is unique)—we store (n− k + 1) k-mers and their locations. For large n

and large k, this space requirement is problematic.

There are a variety of ways to surmount this problem, including for example the

use of hash maps or Bloom filters [8]. Like Gepard [101], wotplot addresses this problem

by using suffix arrays [112] to identify shared k-mers between the two input sequences.

However, there are multiple ways to use suffix arrays to identify shared k-mers;

currently, wotplot supports the use of two algorithms that solve this problem. In both

cases, wotplot makes use of pydivsufsort [1], a Python package that provides access to

the libdivsufsort library for fast suffix array construction [50].

Identifying shared k-mers using suffix arrays and LCP arrays

Currently, the default shared k-mer identification method provided by wotplot

directly uses the pydivsufsort library [1]’s common_substrings() method (https://gith

ub.com/louisabraham/pydivsufsort/issues/42).

This method concatenates the two input strings, uses divsufsort [50] to construct

the suffix array of this concatenate, and uses Kasai’s algorithm [88] to construct the longest

101

https://github.com/louisabraham/pydivsufsort/issues/42
https://github.com/louisabraham/pydivsufsort/issues/42

common prefix (LCP) array of this concatenate. pydivsufsort uses various optimizations

to speed up the process of identifying common substrings using these data structures.

wotplot runs this method twice, once after reverse-complementing one of the strings, to

identify reverse-complementary and palindromic matches.

Although this method is quite fast (using it, wotplot can generate a k = 20 dot

plot of the two E. coli strains shown in Figure 4.1 in roughly 36 seconds), benchmarking

demonstrates that it requires an infeasible amount of memory when comparing sequences

longer than around 20 Mbp each on a laptop with 8 GB of RAM. This is likely due in part

to the method’s use of Kasai’s algorithm, which has substantial space requirements [115].

Below we discuss the other algorithm wotplot supports for identifying shared k-mers,

which has requires much less memory at the cost of increasing the required runtime.

Identifying shared k-mers using suffix arrays alone

As an alternative method, wotplot can avoid constructing an LCP array—and limit

its “initial” work to simply constructing the suffix arrays of both input strings. This

method is referred to as “suff-only” in wotplot’s interface.

Given two sequences (of lengths m and n), this method constructs their suffix arrays

separately, again using divsufsort [1, 50]. It then iterates simultaneously through both

suffix arrays from start to end in order to record all positions of all shared k-mers. This

approach is reasonably space-efficient compared to the common_substrings() method,

since it does not incur the space requirements of running Kasai’s algorithm (and the space

requirement of storing the resulting LCP array). (To identify reverse-complementary and

palindromic matches, wotplot repeats this procedure after reverse-complementing one of

the strings.)

This method is slower than the common_substrings() method (using wotplot to

generate the k = 20 dot plot of the two E. coli strains shown in Figure 4.1 using this

method takes roughly 2 minutes and 35 seconds); in part, this is likely because the lack of

102

an LCP array makes iteration through the suffix arrays slower than it could be. However,

due to this method’s notably lower space requirements, it enables the creation of exact

dot plot matrices of very large sequences on low-memory systems. On a laptop with 8 GB

of RAM, this method was able to create the k = 20 dot plot matrix of two random 150

Mbp sequences in 1 hour, 8 minutes, and 46.89 seconds.

4.4.3 Rapid visualization of large dot plot matrices

wotplot uses matplotlib [78]’s spy() function to visualize only the nonzero (match)

entries of dot plot matrices; even large matrices can be plotted very quickly in this way.

Creating figures programmatically is often an iterative process [62], and the separa-

tion of dot plot matrix creation and visualization expedites this process. After creating

the k = 20 dot plot matrix of two E. coli strains shown in Figure 4.1 (which takes

approximately 35 seconds), visualizing this matrix typically takes less than a second.

This simplifies the process of interactive figure creation, making it easy for researchers

to repeatedly try out various visualization parameters until they are satisfied with the

resulting figure.

4.4.4 Data availability

I downloaded the E. coli K-12 genome used to create Figure 4.1 from RefSeq (ID

NC_000913.3). I also downloaded the E. coli O157:H7 genome used to create Figure 4.1

from RefSeq (ID NC_002695.2). To facilitate comparison with the K-12 genome, I omitted

the two plasmid sequences of O157:H7 when creating Figure 4.1.

4.4.5 Software dependencies

wotplot’s code directly relies on NumPy [70], SciPy [203], matplotlib [78], and

pydivsufsort [1]. In addition to these dependencies, I used pyfastx [38] to load the E. coli

sequences used to generate Figure 4.1, and used the memory_profiler [146] package to

103

benchmark memory use.

4.4.6 Software availability

wotplot’s source code is available on GitHub at https://github.com/fedarko/wotplot.

As of writing, wotplot supports all Python versions ≥ Python 3.6; its code is automatically

tested on Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13.

wotplot’s GitHub repository includes a detailed tutorial explaining how to use this

software, including demonstrations of how to generate Figures 4.1 and 4.2. It also presents

benchmarking results demonstrating the use of wotplot on pairs of randomly-generated

DNA sequences of increasing length, showing how wotplot’s time and memory requirements

increase accordingly.

4.5 Discussion

Here I presented wotplot, a software library for the efficient creation and visualization

of dot plot matrices. I created this library to fill a gap in the field, and the library has

served this purpose well. It has been useful in the development of metaLJA in Chapter 2,

and I hope it will be similarly useful for other bioinformatics projects.

Although the tool satisfies the needs I had when creating it, there is still room to

make it more efficient. For example, during the process of dot plot matrix creation, we

are only interested in identifying exact matches of length k between our input sequences.

However, we use suffix arrays to identify these matches. Since creating the suffix array of

a string requires the comparison (implicit or explicit) of all characters within each suffix

of this string, rather than just the first k characters of each suffix of this string, the use

of suffix arrays to identify matching k-mers could be thought of as overkill. In this vein,

there are doubtlessly more efficient algorithms and implementation techniques that could

be applied to speed up this tool.

104

https://github.com/fedarko/wotplot

4.6 Acknowledgements

Chapter 4, in full, is a reprint of the material as it appears in “Efficient creation and

visualization of exact dot plot matrices.” Fedarko MW. In preparation. The dissertation

author was the primary investigator and sole author of this paper.

105

Appendix A

Supplemental material for Chapter 1

A.1 Supplemental material for Chapter 1.1

A.1.1 Computing feature differentials using Songbird

As discussed in the main text, the initial focus of this re-analysis was on visualizing

the associations of features with different Scomber japonicus body sites. To assess this,

we ran Songbird [132] using the formula C(sample_type_body_site, Treatment('sea

water')). This produced six fields of differentials:

1. Intercept

2. C(sample_type_body_site, Treatment('sea water'))[T.fish GI]

3. C(sample_type_body_site, Treatment('sea water'))[T.fish digesta]

4. C(sample_type_body_site, Treatment('sea water'))[T.fish gill]

5. C(sample_type_body_site, Treatment('sea water'))[T.fish pyloric caeca]

6. C(sample_type_body_site, Treatment('sea water'))[T.fish skin]

The last five fields of differentials (2–6) describe the association of features with

samples from each of the studied body sites, using seawater samples as a reference via

Treatment coding.

106

(For reference, the fourth differential field, C(sample_type_body_site,

Treatment('sea water'))[T.fish gill], is what is shown in the rank plot sub-figures

in the main text.)

The first field, Intercept, is less easily interpretable and not particularly relevant to

the case study; this field is produced automatically by Patsy (https://patsy.readthedocs.io),

the library used by Songbird to represent input formulae as design matrices.

Songbird mathematical details

As is also described in [132], the multinomial regression used in Songbird is given

as follows:

β ∼ N(0, σ)

ηi = alr−1(Xiβ)

Yi ∼ Multinomial(ηi)

where β ∈ Rk×d−1 represents the regression coefficients for d features and k covari-

ates, Xi are the covariate measurements for each sample i, and Yi are the feature counts in

sample i. A normal prior with variance σ is used to regularize the regression coefficients. A

maximum likelihood procedure is employed to identify the optimal regression coefficients.

The vectors βk ∈ Rd−1 are in alr coordinates, and as a result can be represented

as compositions by alr−1(βk) ∈ Sd. In [132], these vectors are referred to as differentials.

Since ranking is shift invariant, the ordering of this composition is agnostic to the choice

of reference frame. As a result, the features can be sorted by their coefficients in βk. By

default, these differentials are represented in clr coordinates.

The regression implemented in Songbird is similar to the methodology in other

differential abundance tools, such as ALDEx2 [49] and DESeq2 [109]. The estimated

107

https://patsy.readthedocs.io

regression coefficients from any of these tools can be visualized in Qurro: a fully worked

example demonstrating the use of Qurro with ALDEx2 outputs is linked to from Qurro’s

Tutorials section of its README, located at https://github.com/biocore/qurro.

Differential names

Due to some current technical limitations, Qurro (as of writing) changes or removes

certain special characters like [or ' from field names. This is why the gill differential field

name shown in Qurro—C(sample_type_body_site, Treatment(sea water))(T:fish

gill)—has a slightly different name than it did in Songbird’s output. (This behavior

is documented in Qurro’s README, which is distributed with its source code at https:

//github.com/biocore/qurro.)

A.1.2 Qurro log-ratio-selection controls used

The log-ratios selected in Figures 1.1 and 1.2 were selected using Qurro’s filtering

controls in the following way.

Figure 1.1 (Shewanella to Synechococcales)

1. The numerator was selected by filtering to features where the Taxon field contained

the text Shewanella.

2. The denominator was selected by filtering to features where the Taxon field contained

the text Synechococcales.

Figure 1.2 (Shewanella to bottom ∼ 10% features)

1. The numerator was selected by filtering to features where the Taxon field contained

the text Shewanella.

2. The denominator was selected by filtering to features where the gill differential value—

that is, C(sample_type_body_site, Treatment(sea water))(T:fish gill)—

108

https://github.com/biocore/qurro
https://github.com/biocore/qurro
https://github.com/biocore/qurro

was less than -2.102. (This value was chosen in order to make the denomina-

tor include exactly the bottom 98 features.)

Screenshots of using these controls in Qurro are shown in Figures A.1 and A.2.

Screenshot details

As the warning shown on the left side of the screenshots in Figures A.1 and A.2

explains, the rank plot in these screenshots has been scaled so that each bar (feature) has a

width of less than 1 pixel: this is done in order to show more of the rank plot on the screen

at once. Unchecking the Fit bar widths to a constant plot width? checkbox resets

the bar widths in the rank plot to a larger value comparable to that shown in Figures 1.1

and 1.2, albeit one that results in the full rank plot not being visible all at once on most

screens without horizontally scrolling.

These visualizations were generated using Qurro version 0.6.0 and are displayed

here on a macOS 10.15.3 laptop using Google Chrome version 80.0.3987.132. When taking

these screenshots, the browser was zoomed out somewhat to show more of the controls

and the Numerator Features table at the bottom-left of the screen was scrolled to the

right to show selected numerator features’ classified taxonomy information.

A.1.3 Details on Qurro (and Songbird) input data filtering

Running Qurro requires a few distinct input files (or QIIME 2 artifacts, if running

it as a QIIME 2 plugin): a feature table, a “rankings” file, a sample metadata file, and

optionally a feature metadata file.

If any features within the feature table are not present in the input rankings, then

Qurro will not include these features in the output visualization (since they would not be

displayable on the rank plot). This means that, although Qurro doesn’t impose very strict

filtering guidelines on its own by default, the filtering behaviors of upstream “ranking”

tools will necessarily impact the amount of data shown in Qurro.

109

Figure A.1. Screenshots of a Qurro visualization of the case study data, showing the
controls used to recreate Figures 1.1A–C. Note the text entered in the Selecting Features

by Filtering section at the bottom-right of the screen, which shows the textual queries
used to select a log-ratio of Shewanella features to Synechococcales features.

110

111

Figure A.2. Screenshots of a Qurro visualization of the case study data, taken analogously
to those in Figure A.1 but this time showing the controls used to recreate Figures 1.2A–C.
The difference between these screenshots and those in Figure A.1 is due to the selected
denominator features, which now comprise the bottom 98-ranked features for the gill
differentials rather than the classified Synechococcales features. Although it is cut off
somewhat by the dropdown’s width, the first dropdown after the Filter denominator to

features where label indicates that the C(sample_type_body_site, Treatment(sea

water))(T:fish gill) differential field is selected.

112

113

Since this impacts the case study, we go into detail about this behavior here.

Songbird’s --min-feature-count

For the case study dataset described in the manuscript, there were 23,253 features

present in the feature table before running Songbird. However, Songbird applies a default

--min-feature-count (i.e. the minimum number of samples a feature must appear in) of

10: this resulted in a large amount of features being removed from the visualization due

to only appearing in a handful of samples. This is why there are just 985 features in the

resulting Qurro visualization. (When generating a Qurro visualization, Qurro will output

details explaining—if applicable—why certain samples/features have been removed from

the visualization.)

Why aren’t there any seawater samples shown in the paper figures?

One of the things we noticed midway through this case study was that Shewanella

spp., for the most part, did not appear in seawater samples. To help explain this, we

prepared a Jupyter Notebook [95] that shows why these samples have been dropped. This

notebook is available in the repository https://github.com/knightlab-analyses/qurro-mac

kerel-analysis.

Non-numeric age_2 values.

Since the age_2 field refers to the estimated age of a sample’s host fish, this field is

not meaningful for non-fish samples like seawater. As shown in the notebook, all of the

50 seawater samples in our feature table have a non-numeric age_2 value—this is one of

the “reasons” Qurro has for dropping samples from the sample plot, and it explains why

seawater samples cannot be shown in Figures 1.1C or 1.2C.

Relative lack of Shewanella features.

As shown in the notebook, only one of the 50 seawater samples in our feature table

included a feature classified as Shewanella. This particular Shewanella feature only appears

114

https://github.com/knightlab-analyses/qurro-mackerel-analysis
https://github.com/knightlab-analyses/qurro-mackerel-analysis

in two samples in the feature table (including the aforementioned seawater sample), so it

is not ranked by Songbird due to the default --min-feature-count described above.

From the Qurro visualization’s perspective, then, none of the seawater samples

contains any Shewanella features—so visualizing both of the log-ratios shown in the

paper’s case study will necessarily involve filtering out all of the seawater samples, unless

imputation of some form were to be used. This is the reason why seawater samples are

not shown in Figures 1.1B and 1.2B, and it’s a reason (in addition to the age_2 reason)

why seawater samples are not shown in Figures 1.1C and 1.2C.

Reflection on this phenomenon.

We note that the large amount of samples dropped here was likely caused in part

by the nature of the case study. Since in general different body sites are expected to

harbor different microbial communities, it makes sense that taxa common in one sample

type might go almost or completely undetected in other sample types.

When looking for differentially abundant taxa across more subtly different sample

categories (e.g. skin samples at different timepoints in the progression of atopic dermatitis,

as shown in [132]), we expect that sample dropout like what we observed with seawater

samples here will be less of an issue.

A.2 Supplemental material for Chapter 1.2

A.2.1 Differential abundance comparison of oral microbiomes

To provide additional context to the relationship between Songbird [132], ALDEx2

[49], and ANCOM [113]’s measures of differential abundance, Figure A.3 shows a scatterplot

of these methods’ outputs.

115

Figure A.3. Scatterplot comparing the three differential abundance methods’ results
shown in Figure 1.4C. The x-axis and y-axis represent the Songbird differentials and
ALDEx2 effect sizes for the features in the dataset, while each feature point is colored
by its ANCOM W-statistic. This demonstrates that our starting interpretation of how
these results relate—i.e. that Songbird and ALDEx2’s results have similar “directionality”
between the before- and after- toothbrushing states, and that ANCOM’s W-statistic
lacks this same directionality—is reasonable. The nine features for which no Songbird
differentials were available are omitted from this plot. This scatterplot was produced using
matplotlib [78].

116

A.2.2 Animated analysis of SARS-CoV-2

Supplemental Movie S1 (available online at https://doi.org/10.1128/mSyste

ms.01216-20) demonstrates a longitudinal community analysis of SARS-CoV-2 using

phylogenetically-informed animations. Each tip in the tree represents a SARS-CoV-2

genome. Each sphere in the ordination represents the genomes collected over a 7-day

window. This movie showcases some analytical capabilities available in EMPress.

We gratefully acknowledge the authors, originating and submitting laboratories of

the sequences from GISAID’s Database on which this analysis is based. The list is detailed

in Supplemental Table S1, available online at https://doi.org/10.1128/mSystems.01216-2

0.

117

https://doi.org/10.1128/mSystems.01216-20
https://doi.org/10.1128/mSystems.01216-20
https://doi.org/10.1128/mSystems.01216-20
https://doi.org/10.1128/mSystems.01216-20

Appendix B

Supplemental material for Chapter 3

B.1 Read alignment

strainFlye aligns reads to edge sequences in the assembly graph in order to identify

mutations that may have been “smoothed over” in the process of metagenome assembly:

the resulting alignment is a prerequisite for mutation identification, and impacts all

downstream analyses in strainFlye. The strainFlye align command uses minimap2

[106] to compute an alignment, after which it filters various sources of noise from the

alignment; however, this command can be skipped if a user has an existing BAM file

representing an alignment of reads to edges. This Appendix describes how strainFlye

align works.

Performing alignment.

strainFlye uses minimap2 [106] to align all reads against the assembly graph’s

sequences. By default, we use the asm20 preset parameter set for the alignment per

recommendation from the minimap2 documentation for use with HiFi data; however,

this and other minimap2 parameters are easily adjustable by the user, for example if the

map-hifi preset (introduced in recent versions of minimap2) is preferred instead. We

also use the --secondary=no parameter to exclude secondary alignments [188]. After

minimap2 creates the initial alignment, we then use SAMtools [107] to convert it to a

sorted and indexed BAM file.

118

In the context of the SheepGut dataset, some edges may have no reads aligned to

them, even before we filter the alignment. In our experience this can happen for edges

that are shorter than the usual read length; these edges (which tend to have extremely

high coverages) seem to be an assembly artifact from metaFlye, likely corresponding to

repetitive sequences, and most of the analyses in this paper implicitly ignore these edges.

We note that this alignment process retains supplementary (also referred to as

“chimeric”) alignments, in which a read may have multiple distinct linear alignments [188];

these alignments can be useful in describing structural variation, or in representing a read

that spans the start and end of a single circular sequence. Although we preserve supple-

mentary alignments, we do take pains to remove reads that have alignments overlapping

with other alignments from the same read: the remainder of this Appendix provides details

on the filtering steps strainFlye performs on minimap2’s alignment, as well as potential

extensions to these filters.

Filtering out overlapping supplementary alignments.

Given a single read with two linear alignments A1 and A2 to a reference genome,

there are two types of “overlap” we could define between A1 and A2. We note that these

types of overlap are not necessarily mutually exclusive.

The first type of overlap is defined with respect to the reference genome. In this

case, A1 and A2 align to regions of the reference genome that overlap with each other.

The second type of overlap is defined with respect to the read sequence itself. In

this case, A1 and A2 originate from overlapping regions of the read sequence.

We refer to these types of overlap as reference and read overlap, respectively. The

SAM specification currently states that “[for] a chimeric alignment, the linear alignments

constituting the alignment are largely non-overlapping” [188]; however, it is unclear whether

the type of overlap described is reference or read overlap.

Neither type of overlap bodes particularly well in the context of our analyses. Here,

119

we focus on removing reference-overlapping supplementary alignments; the consequences

of these alignments on downstream analysis seem more problematic than the consequences

of read-overlapping alignments.

While performing the analyses described in this paper, we noticed that a small,

albeit substantial, number of supplementary alignments from individual reads exhibited

reference overlap. Strangely, these overlaps sometimes spanned thousands of nucleotides

in a read; these may thus be a sequencing artifact, since HiFi reads have been shown to

be vulnerable to molecular chimeras [210].

Before filtering overlapping supplementary alignments and before filtering partially-

mapped reads, the following supplementary alignment statistics held for the three selected

MAGs.

In CAMP, 8,645 / 503,385 (1.72%) unique reads aligned to within the MAG

had supplementary alignments within CAMP. On average, these 8,645 reads had 2.07

alignments within CAMP. Furthermore, 2,180 / 503,385 (0.43%) unique reads aligned to

within CAMP had supplementary alignments within CAMP and had reference overlap

between at least one pair of their alignments within CAMP. The average length of these

overlaps (considering all pairs of overlapping alignments within CAMP from the same

read) was 580.12 bp.

In BACT1, 6,067 / 268,075 (2.26%) unique reads aligned to within the MAG

had supplementary alignments within BACT1. On average, these 6,067 reads had 2.04

alignments within BACT1. Furthermore, 470 / 268,075 (0.18%) unique reads aligned to

within BACT1 had supplementary alignments within BACT1 and had reference overlap

between at least one pair of their alignments within BACT1. The average length of these

overlaps (considering all pairs of overlapping alignments within BACT1 from the same

read) was 1,417.80 bp.

In BACT2, 5,497 / 745,461 (0.74%) unique reads aligned to within the MAG

had supplementary alignments within BACT2. On average, these 5,497 reads had 2.04

120

alignments within BACT2. Furthermore, 728 / 745,461 (0.10%) unique reads aligned to

within BACT2 had supplementary alignments within BACT2 and had reference overlap

between at least one pair of their alignments within BACT2. The average length of these

overlaps (considering all pairs of overlapping alignments within BACT2 from the same

read) was 2,561.42 bp.

Regardless of whether these reads with overlapping supplementary alignments

correspond to chimeras or not, the presence of these overlaps complicates interpretation of

the alignment data—especially in analyses that take into account the sequence carried on

individual reads, for example phasing and codon mutation analyses.

Although it is possible to only filter some of a read’s supplementary alignments as

needed to prevent reference overlap, we act on the assumption that the presence of any

reference-overlapping alignments for a given read implies that this read is unreliable for

our analyses. This will likely be overly strict—some “correct” reads may simply happen

to have reference overlap in their supplementary alignments—but we contend that, in the

context of identifying rare mutations, overly strict filtering is defensible. We therefore

identify all reads with reference-overlapping supplementary alignments relative to any of

the edges in the alignment, and completely filter all of these reads from the alignment.

The impacts of this filter on sequencing coverage in the three selected MAGs are shown in

Figure B.4.

Slight error in the overlapping supplementary alignment filter.

We note that the version of this filter we used for the alignments throughout

this paper was overly strict, due to an off-by-two error in its computation of “overlap”

between linear alignments of a read (rather than subtracting 1 from each alignment’s end

coordinate, it mistakenly added 1). This resulted in a relatively small amount of reads

being erroneously removed by our filter and thus not included in this paper’s results—

anecdotally, many of these removed reads represent cases where minimap2 would create

121

two distinct linear alignments of a read directly next to each other, but not overlapping,

on a single contig.

Based on analyzing initial versions of the SheepGut and ChickenGut alignments

(reflecting just the output of minimap2, before applying our filters; we re-ran the alignment

processes to obtain these “intermediate” alignment files), the number of reads that would

have been erroneously removed by this bug is relatively small: 27,211 reads (0.12%) in

SheepGut, and 1,596 reads (0.08%) in ChickenGut. In particular, the three selected MAGs

in SheepGut (CAMP, BACT1, BACT2) are only subtly affected: there were 16, 9, and

3 reads erroneously filtered for these MAGs, respectively. (For reference, the statistics

quoted earlier in this Appendix about overlapping supplementary alignments in the three

selected genomes are correct.) We expect that this bug should have a minimal impact on

the paper’s conclusions; moving forward, we have also fixed this bug in version 0.2.0 of

strainFlye.

Filtering out partially-mapped reads.

Although we instruct minimap2 to not output secondary alignments, our preserva-

tion of supplementary alignments means that a single read may still be mapped to multiple

contigs.

Reads that are mapped to multiple contigs in this way may be of good quality and

worth retaining: for example, if a genome is split into multiple edges within a connected

component of the assembly graph, then we might expect some reads’ alignments to also be

split across different edges within this component. Similarly, since most bacterial genomes

are circular [23], reads that happen to cover both the “start” and “end” of a circular MAG

may be split into a supplementary alignment [188].

However, some reads are less desirable. For example, a read with alignments to

edges located in completely different connected components of the assembly graph—with

only short alignments to individual edges—is likely not useful in identifying rare mutations,

122

and should be removed. This section details our attempt to filter out these sorts of

“partially-mapped reads,” with the goal of removing undesirable supplementary alignments

between unrelated contigs while preserving ordinary supplementary alignments within a

contig or between adjacent contigs.

An earlier method we attempted to use for this involved simply filtering out reads

that contained more than a set number of soft-clipping operations, as mentioned at

https://github.com/samtools/samtools/issues/1169. However, we noticed that this caused

coverage drops near the ends of MAGs’ sequences due to penalizing the aforementioned

“desirable” supplementary alignments.

We therefore took a different strategy in the current implementation of this filter.

Our filter considers each edge sequence, and then considers all reads aligned to this edge,

counting the number of match and/or mismatch operations in the CIGAR strings of each

read’s alignment to this edge. If an assembly graph file is provided to strainFlye align

(so that we know which edges are adjacent to each other), and if this edge has less than 50

adjacent edges in the graph (ignoring links between the edge and itself), the script also

checks reads aligned to these adjacent edges and also counts match/mismatch operations

from any reads that are aligned to both the adjacent edge and the initially-considered

edge. A given read is only included in the filtered alignment for this edge if the sum of all

match/mismatch operations in this read in this edge (and in adjacent edges, if applicable)

is at least 90% of the read length.

We note that this method is not perfect—for example, supplementary alignments

can still have overlaps relative to their read sequence (as described earlier in this Appendix),

so the sum of match/mismatch operations as we currently compute them is not necessarily

a perfect measure of how much of a read is mapped to a given MAG. Additionally, the

reason for the coverage drops near the end of CAMP (Figure B.3; CAMP is the only of

the three selected MAGs located in an assembly graph component containing other edges),

in spite of our attempts to allow alignments to adjacent edges in the same graph to count

123

https://github.com/samtools/samtools/issues/1169

towards the 90% threshold, is unclear. This may be due to the “full genome” of CAMP

being split across the edges in its component, and this complicating the alignment process.

In spite of these imperfections, from manual examination of its results the filter’s behavior

seems acceptable. The impacts of this filter on sequencing coverage in the three selected

MAGs are implied in the comparison between the second plot for each MAG in Figure

B.4 and the plots in Figure B.3: removing partially-mapped reads results in many of the

extreme “peaks” in Figure B.4 being removed.

Potential filtering extensions.

Although strainFlye’s default alignment filtering methods seem suitable for our

purposes, these methods could certainly be extended to perform even more stringent

filtering. More stringent methods should further increase the likelihood that any observed

mismatch at a position corresponds to a real mutation, rather than an error or an artifact

of alignment.

For example, homonucleotide sequences have been known to pose problems for

long-read sequencing technologies; although we have not explicitly accounted for this effect

in our analyses, it would be possible to limit our focus in certain cases—for example, the

construction of a decoy contig—to more complex genomic regions. Similarly, the filtering

of contigs with many “deletion-rich” positions (Appendix B.3) may also prove useful.

B.2 Assembly graph

Choice of dataset and assembler.

Although strainFlye was developed to work with output from the metaFlye assembler

[97], it can be extended to MAGs generated by other HiFi-based tools such as HiCanu

[141], hifiasm-meta [48], and LJA [8]. However, our reliance on long and accurate reads

implies that the use of short reads, or long error-prone reads, will likely pose nontrivial

challenges for strainFlye.

124

Running metaFlye.

When assembling the SheepGut dataset using metaFlye [97], we did not use

metaFlye’s --keep-haplotypes mode. We chose this course of action in order to reduce

fragmentation in the assembly graph (giving us longer, coarser MAGs to use as a starting

point for studying mutations within these MAGs).

Connected components of the assembly graph.

21,750 out of 78,793 edges (27.6%) within the SheepGut assembly graph produced

by metaFlye are located within a single large “hairball” connected component of the

graph. This is a common characteristic of metagenomic assembly graphs due to, for

example, overlap between reads from highly conserved regions (such as 16S rRNA genes)

or the presence of eukaryotic genomes within a metagenome (this dataset includes some

eukaryotic genomes [97]). The second largest component of the assembly graph contains

252 edges. 45,842 out of 45,988 connected components (99.7%) contain 10 or fewer edges

and 43,045 (93.6%) consist of a single edge.

There is a large amount of variance between edge coverages by reads, as reported by

metaFlye, in the assembly graph. The maximum edge coverage is 7,536,987x (for a 580bp

long edge located in the “hairball” largest connected component). The average coverage

across all edges (rounded to the nearest integer) is 951x, while the median coverage is 14x:

the discrepancy between average and median is likely due to the presence of high-coverage

outlier edges, such as the aforementioned maximum-coverage edge.

Summarizing all graph components by length and coverage.

As shown in [5], many of the connected components of the assembly graph containing

a small number of edges likely arise from low-coverage genomes, viruses, or plasmids.

These are therefore not relevant to our selection of high-coverage bacterial MAGs for these

analyses.

In an attempt to distinguish between these cases and components that capture

125

bacterial genomes, we plotted a summary of edge coverage and length for each component.

Figure B.1 shows a scatterplot where each component is represented as a single symbol,

and is plotted by the total edge length in the component and by the sum of (coverage times

length) for all edges in the component divided by the total edge length in the component

[5].

This plot provides insight into which components in the graph are likely to represent

bacterial genomes. We represent the thresholds used in our initial selection process for

edges in the graph (length ≥ 1 Mbp, coverage ≥ 1,000x) as vertical and horizontal lines

in the plot, respectively. This display clarifies that, while many components have a high

“average” coverage or a high total length, few components have both. These components

represent edges that serve as good candidates for demonstrating the analyses shown in

this paper.

We do note that the length threshold shown here could arguably be reduced,

since some bacteria have genomes smaller than 1 Mbp [36]; and that we initially used

these thresholds to search for edges, not components, in the graph. However, this figure

nonetheless indicates that the three selected MAGs are, relative to those available from

this dataset, of good quality.

Details about the three selected MAGs.

Table B.1 provides basic information about CAMP, BACT1, and BACT2.

BACT1 and BACT2 were assembled into edges located in isolated connected

components (i.e. connected components containing just one edge) of the full dataset’s

assembly graph. The MAG we have named CAMP, however, is located in a component of

the graph containing 31 other edges: this component is shown in Figure B.2, for reference.

Although CAMP has not been completely assembled, we have nonetheless included it

in the analyses throughout this paper due to its relatively high coverage. CheckM [145]

estimates “completeness” values of 81.4% for CAMP, 96.9% for BACT1, and 94.6% for

126

Figure B.1. Summary of coverage and length across all connected components of the
assembly graph. Each symbol (asterisk, square, plus sign, triangle, circle) represents a
single component in the graph: the x-axis shows the total edge length for each component,
and the y-axis shows an aggregate measure of coverage for each component (using coverages
as defined by metaFlye and not based on the alignment-based reads(pos) values computed
in 3.3.2 and used elsewhere in this paper). In order to relate this plot to our selection
criteria for MAGs (discussed in section 3.3.1, “Demonstrating strainFlye”), we plot lines
showing the length and coverage minimum cutoffs we used on the plot (length ≥ 1 Mbp,
coverage ≥ 1,000x). The few points located in the top-right “quadrant” defined by these
lines represent MAGs that pass these cutoffs. The components containing the three
MAGs we focus on throughout these analyses—CAMP, BACT1, and BACT2—are colored
specially and shown as distinct symbols in the plot. It is clear that these three MAGs,
and only three additional components in the graph, pass both the length and coverage
cutoffs. We assign the “hairball” component of the graph a special color and symbol in
order to simplify comparison of it with the other components in the graph: although this
component has a high total edge length (causing it to appear as an outlier even on a log
scale), its aggregate coverage is relatively low. Lastly, we note that the lack of components
to the left of x = 102 is a reflection of the fact that all components in the graph have a
total edge length greater than 100 bp. However, the aggregate measure of coverage is not
similarly high: for many components, this value is 0x. We have set both the x and y axes
to both have a minimum of 0 in order to clarify this.

127

128

Table B.1. The three selected MAGs for mutation analyses. The names CAMP, BACT1,
and BACT2 refer, respectively, to edges with IDs 6104, 1671, and 2358 in the metaFlye
assembly graph. We note that CAMP’s completeness is relatively low because it was not
assembled into a single circular sequence. Since predicted PCGs can overlap, we “count”
a position present in multiple genes only once when computing the amount of positions in
PCGs.

Name Length
(Mbp)

Coverage Protein-
Coding
Genes

(PCGs)

Intergenic
Regions
(IRs)

Positions
in PCGs
(Mbp)

Positions
in IRs
(Mbp)

CAMP 1.29 4,159x 1,297 788 1.19 0.10
BACT1 2.15 1,415x 1,761 1,559 1.95 0.21
BACT2 2.81 2,993x 2,567 2,196 2.29 0.51

Figure B.2. Visualization of the connected component containing edge 6104 (correspond-
ing to CAMP) in the larger assembly graph, shown to clarify the component’s structure.
Coverages (reported by metaFlye, and slightly different from the (mis)match coverages
based on our alignment that are shown in Table B.1) are shown overlaid on the edges
within the graph. The long magenta edge shown with coverage 4,166.0x is edge 6104. We
visualized this graph using Bandage [212].

129

BACT2; and “contamination” values of 0.0% for CAMP, 0.6% for BACT1, and 0.4%

for BACT2. The relatively low completeness estimate for CAMP is likely a result of its

incomplete assembly.

Taxonomic classifications of the three selected MAGs.

We used Kaiju [124]’s web server to classify these MAGs. We used the “NCBI

BLAST nr +euk” reference database and default parameters.

B.3 Coverages and deletion-rich positions

Coverages of the three selected MAGs in SheepGut.

Although many of the analyses in this paper assume that coverage is roughly

uniform throughout the three selected MAGs, their coverages do vary somewhat. To

illustrate this, Figure B.3 shows plots of coverage for each position in the three selected

MAGs. Unlike the coverage plots shown in the Appendix B.16, these coverages are not

binned or normalized.

Coverage drops in SheepGut.

Figure B.3 reveals a surprising result in BACT2 (and, to a much smaller extent,

CAMP and BACT1): the presence of many individual positions to which many deletions

are aligned, causing the coverage based purely on matches and mismatches for these

positions to be relatively low. Manual inspection of some of these positions with samtools

tview [107] confirms this.

More gradual coverage drops like those seen near the ends of CAMP, or near the

middle of BACT1, could be in theory explained by real coverage variation in sequencing

or noise introduced through the assembly and/or alignment processes. Figure B.4 presents

coverage plots similar to those in Figure B.3, demonstrating that the two gradual coverage

drops near the ends of CAMP (and, to an extent, in the middle of BACT1) indeed seem

to have been introduced by our alignment filtering steps (Appendix B.1). However, these

130

Figure B.3. Coverage throughout the three selected MAGs, with and without deletions.
Each dot represents a single position in a MAG. For the first plot for each MAG (using blue
points), the coverage at a given position is defined as the total number of aligned reads to
this position that have a match or mismatch operation, ignoring insertions and deletions;
this is also how we computed the average MAG coverages in Table B.1. For the second
plot for each MAG (using red points), each position’s coverage now includes the number of
deletions aligned to it. The average coverage for each plot is shown as a horizontal dashed
line. Although most parts of these MAGs have somewhat uniform coverage, especially
in the “including-deletions” plots, both plots for CAMP and for BACT1 have noticeable
gradual drop(s) in coverage. Furthermore, BACT2 has a relatively large amount of “outlier”
positions with many deletions: these positions have relatively low coverages for the first
plot, and these low coverages vanish when counting deletions towards coverage. These
“deletion-rich” positions are investigated in this Appendix.

131

132

plots also show that the high amounts of deletions in the aforemented positions in BACT2

were not introduced by these filters, indicating that further investigation is needed as to

the origin of this phenomenon.

Deletion-rich positions in SheepGut and ChickenGut.

We define a position in a contig as deletion-rich if, for some integer d, there are d

or more deletions aligned to this position. For example, most of the outlier positions in

BACT2 are deletion-rich for d = 500.

This definition enables us to ask two immediate questions. First, considering various

values of d, do there exist many deletion-rich positions in other contigs in SheepGut besides

the three selected MAGs? And, if so: does this pattern also hold in other contigs in other

HiFi metagenomic datasets besides SheepGut?

Figure B.5 answers both of these questions affirmatively. First, many contigs in

SheepGut (besides the three selected MAGs) contain many deletion-rich positions even for

high values of d; second, this pattern also holds for many contigs in ChickenGut (Appendix

B.4). Since the contigs in ChickenGut were assembled using hifiasm-meta [48], while

the contigs in SheepGut were assembled using metaFlye [97], the persistence of many

deletion-rich positions across many contigs in both datasets implies that these positions

are not introduced by the assembly process.

These deletion-rich positions may happen to correspond to real variation in these

MAGs; they could also, in theory, be introduced by minimap2 [106], which we used to

align reads to contigs for both SheepGut and ChickenGut. However, we believe it is

much more likely that these positions are an artifact of HiFi sequencing that—for some

reason—introduces many deletions at certain positions, e.g., positions corresponding to

homonucleotide and dinucleotide runs that often trigger errors in HiFi reads [141]. Other

analyses of HiFi data have shown gradual coverage drops and suggested that these may

arise from problems in HiFi sequencing [141, 139]; these deletion-rich positions may have

133

Figure B.4. Coverage throughout the three selected MAGs, before each of the two
alignment filtering steps. The first row for each MAG plots the coverage after performing
alignment using minimap2 [106], but before any additional filtering. The second row for
each MAG plots the coverage after using just the overlapping-supplementary-alignment
filter (Appendix B.1; this filter is also impacted by the off-by-two bug discussed there).
Finally, Figure B.3 demonstrates the coverages for each MAG after both the overlapping-
supplementary-alignment filter and the partially-mapped read filter (Appendix B.1).
Primarily, this figure demonstrates to us that the many deletion-rich positions in BACT2
were not introduced, somehow, by these filters. It does, however, indicate that the drops
in coverage near the ends in CAMP were introduced by the partially-mapped read filter,
since these drops are not observed in this figure but are observed in Figure B.3. Parts
of the coverage drop in the middle of BACT1 seem also to have been introduced by
the partially-mapped read filter. We note that we needed to re-run the full alignment
process for SheepGut to produce this figure, since we did not initially preserve intermediate
alignment files in order to save storage space. These intermediate alignments may thus not
be a perfect match with the intermediate alignments upstream of the one used elsewhere
in this paper.

134

135

0
1

10

100

1,000

10,000

d = 5 d = 10 d = 25 d = 50 d = 100 d = 200 d = 500 d = 1,000

0
1

10

100

1,000

10,000

0
1

10

100

1,000

10,000

No deletion-
rich positions
in any contigs

No deletion-
rich positions
in any contigs

No deletion-
rich positions
in any contigs

0 1 10 10
0
1,0

00
10

,00
0

10
0,0

00

1,0
00

,00
0

0
1

10

100

1,000

10,000

0 1 10 10
0
1,0

00
10

,00
0

10
0,0

00

1,0
00

,00
0 0 1 10 10

0
1,0

00
10

,00
0

10
0,0

00

1,0
00

,00
0 0 1 10 10

0
1,0

00
10

,00
0

10
0,0

00

1,0
00

,00
0 0 1 10 10

0
1,0

00
10

,00
0

10
0,0

00

1,0
00

,00
0

No deletion-
rich positions
in any contigs

No deletion-
rich positions
in any contigs

No deletion-
rich positions
in any contigs

SheepGut (all 78,793 contigs)

SheepGut (just the 468 contigs with lengths 1 Mbp)

ChickenGut (all 17,073 contigs)

ChickenGut (just the 148 contigs with lengths 1 Mbp)

Number of positions with at least d deletions in a contig

Nu
m

be
r o

f c
on

tig
s

Number of "deletion-rich" positions per contig

Figure B.5. Histograms of the amounts of deletion-rich positions in each MAG. Each
row corresponds to a different dataset, or subset of a dataset; each column describes a
value of d we use to classify a position as deletion-rich. These plots demonstrate that, in
general, many contigs in each dataset contain many deletion-rich positions, indicating that
the high amount of “outlier” positions shown in BACT2 in Figures B.3 and B.4 is not
unique to this MAG. We omit histograms for d ≥ 200 for the two ChickenGut datasets
because no deletion-rich positions exist for these values of d in either dataset: we believe
that this is primarily due to the coverages in the contigs in ChickenGut being, in general,
smaller than those of SheepGut (Appendix B.4).

136

a similar origin.

Setting aside their origin, deletion-rich positions are outnumbered by other positions

in the three selected MAGs. In BACT2, for example: for d ∈ {5, 10, 25, 50, 100, 200,

500, 1,000}, BACT2 (2,806,161 bp long) has {413,276, 222,869, 64,660, 17,458, 2,272,

652, 591, 541} deletion-rich positions, respectively. The percentages of BACT2’s length

comprised of deletion-rich positions are thus {14.727%, 7.942%, 2.304%, 0.622%, 0.081%,

0.023%, 0.021%, 0.019%}, showing that (for large values of d) BACT2 has relatively few

deletion-rich positions.

Implications of deletion-rich positions and other coverage drops.

It is unclear what the “best practice” is for how to handle the presence of deletion-

rich positions in these datasets—whether we should still include deletion-rich positions in

our analyses, ignore these positions for the purposes of mutation calling, or even ignore

entire contigs that contain many deletion-rich positions. For now, we do not explicitly filter

these positions or the contigs that contain them, although doing so may be a promising

avenue for future analyses of HiFi data.

Similarly, we do not take special measures to filter contigs with more gradual

coverage drops like those in CAMP or BACT1. In general, mutations called in low-

coverage regions in a contig should be subject to scrutiny; calling p-mutations while

using a higher minAltPos value may improve the reliability of the called mutations

(see also Appendix B.9). This is true even in contigs with coverage drops, since using

higher values of minAltPos implictly increases the coverage needed to call a p-mutation;

however, such a measure will necessarily result in identifying fewer mutations in low-

coverage regions. Calling few mutations in low-coverage regions of a contig will have

the unpleasant side effect of limiting our ability to phase this contig, and may result

in the mis-identification of coldspots. To an extent, these problems are inherent to the

dataset under consideration, although they may be possible to circumvent through more

137

sophisticated mutation identification tools.

B.4 Demonstrating strainFlye on the ChickenGut

dataset

To show that strainFlye can be applied easily to other datasets besides SheepGut—

and, in addition, to the output of other assemblers besides metaFlye [97]—we applied it

to a HiFi read-set (referred to as “ChickenGut”) from a chicken gut metagenome that was

assembled using hifiasm-meta [48].

Input reads and hifiasm-meta assembly.

We downloaded the reads in this dataset in SRA format (section 3.5, “Methods”),

and used the fastq-dump tool to create a FASTQ file of these reads.

We began our analysis of this dataset using the hifiasm-meta assembly generated

in [48]. Since hifiasm-meta’s output includes multiple assembly graph files, we used the

contigs in the assembly graph labelled chicken.hifiasm-meta.p ctg.gfa.gz, based on

the advice given in https://github.com/xfengnefx/hifiasm-meta/issues/10. This assembly

graph includes 17,073 contigs.

Alignment and näıve p-mutation identification.

Using strainFlye, we converted the assembly graph to a FASTA file of contigs

(strainFlye utils gfa-to-fasta) and then aligned reads to these contigs (strainFlye

align; see Appendix B.1).

We then näıvely called p-mutations in these contigs, as described in section 3.3.2,

“Computing mutation spectra”, using strainFlye call p-mutation with p = 1%. This

value of 1% serves as the minimum value of p used in drawing the FDR curves below; as

we will explain shortly, the coverage of MAGs in ChickenGut is generally lower than that

in SheepGut, limiting our ability to call p-mutations with frequency rarer than 1%.

138

https://github.com/xfengnefx/hifiasm-meta/issues/10

Decoy contig selection and FDR estimation.

In order to visualize FDR curves of mutation identifications in this dataset’s contigs,

we performed FDR estimation using strainFlye fdr estimate. We provided a file

of diversity indices produced by strainFlye call p-mutation as input to the FDR

estimation step, in order to allow the step to automatically select a suitable decoy contig

(section 3.5, “Methods”).

Since the average coverage of contigs in ChickenGut is generally lower than that

in SheepGut, no contigs with lengths ≥ minLength = 1 Mbp and average coverage

≥ minCov = 1,000x exist in this dataset (section 3.3.1, “Demonstrating strainFlye”). In

this situation, strainFlye raises an error explaining the situation to the user (section 3.5,

“Methods”): here we discuss how we adjusted the parameters of decoy contig selection

accordingly.

We can identify potential decoy contigs either by lowering our thresholds for

minimum length, or for minimum average coverage. In total, 148 / 17,073 = 0.87% of

contigs in ChickenGut have lengths ≥ minLength = 1 Mbp; we thus focused on lowering

our minimum average coverage threshold. These 148 contigs have average coverages

ranging from 4x to 304x. Six of these contigs have average coverages of at least 200x;

ten have average coverages of at least 150x; and 18 have average coverages of at least

100x. Although there is some ambiguity in what exactly to set the minimum average

coverage as, we lowered minCov to 100x. This resulted in the automatic selection of

contig s92.ctg000105c (length 1.90 Mbp, average coverage 293x) as the decoy.

The selection of a decoy contig implies FDR estimates for the näıve p-mutation

identifications of all other contigs in the dataset, for various values of p. Using the default

highFrequency = 5% parameter to define a p-mutation as indisputable (section 3.5,

“Methods”), we can draw FDR curves for the “rare” values of p ∈ [1.00%, 4.99%].

139

Visualizing FDR curves.

We present a visualization of eight high-diversity-index target contigs’ FDR curves

for p-mutation identification in Figure B.6. This is analogous to the FDR curve visualization

for SheepGut shown in Figure 3.2.

For Figure 3.2, we selected target contigs for which to draw FDR curves by

considering contigs with high diversity indices (given p = 0.5%). Here, we took a different

approach, and instead chose contigs with high numbers of p-mutations per megabase

at p = 1%. This is because the default minReadNumber = 5 parameter we used in

determining “sufficient coverage” when computing the diversity indices (Appendix B.11)

causes many of the diversity indices computed for small values of p to be undefined for the

long contigs in ChickenGut, due to these contigs’ generally lower coverages. This problem

could be circumvented by re-computing diversity indices using a smaller minReadNumber

value (we note that this may also result in the selection of a different decoy contig), but

for the sake of time we have taken this other approach.

Interestingly, in the SheepGut FDR curve (Figure 3.2), the “Full” decoy context

yielded relatively low FDR estimates for many target contigs (at many values of p), and

the “CP2 & Tv & Nonsense” decoy context yielded relatively high FDR estimates. In

Figure B.6 the situation is reversed; this may be a consequence of the lower coverage in

ChickenGut resulting in fewer observed cases of these relatively rare types of mutations.

If we use the (relatively conservative) “CP2” decoy context, the best value of

p for target contig s7.ctg000008c yielding an estimated FDR ≤ 1% is p = 1.52%.

At this threshold, we identify 5,899 rare mutations per megabase in this target contig

(19,022 rare mutations total), in addition to 503 “indisputable” mutations (p-mutations

at p = highFrequency = 5%). This demonstrates that a large amount of diversity lurks

within this dataset.

This brief analysis illustrates the applicability of strainFlye to additional HiFi

metagenomic datasets: we have shown that our approach for FDR estimation can be

140

Figure B.6. FDR curves for eight target contigs in ChickenGut. We use s92.ctg000105c
as our decoy contig, and chose the target contigs for this figure as the eight contigs (meeting
our length and coverage thresholds) with the largest number of p-mutations per megabase
at p = 1%. We draw a larger plot for the target contig s7.ctg000008c; we circle certain
values of p on the “Full” decoy context curve in this plot for clarity. We note that the FDR
curves drawn for s7.ctg000008c begin at p = 4.95% rather than p = 4.99%, because the
rare mutation rate of this contig is zero for larger values of p—this causes the estimated
FDR for this target contig to be undefined. The colors and other visual representations
used here for each decoy context (and combinations thereof) match those used in Figure
3.2. In general, the coverages of the “long” contigs in ChickenGut are much smaller than
those in SheepGut, resulting in the identification of fewer rare mutations in target and
decoy contigs alike.

141

0 1 10 100
0

2,000

4,000

6,000

s7.ctg000008c
3.22 Mbp; 109x

0 1 10 100
0

1,000

2,000

3,000

4,000

5,000

s237.ctg000283c
3.38 Mbp; 145x

0 1 10 100 1,000
0

1,000

2,000

3,000

s224.ctg000264c
3.62 Mbp; 150x

0 1 10 100 1,000
0

200

400

600

800

s71.ctg000079c
3.59 Mbp; 150x

0 1 10 100
0

200

400

600

800

s123.ctg000145c
2.01 Mbp; 132x

0 1 10 100 1,000
0

200

400

600

s14.ctg000015c
2.66 Mbp; 173x

0 1 10 100
0

200

400

600

s1.ctg000002c
3.01 Mbp; 305x

0 1 10 100 1,000
0

200

400

600

s84.ctg000094c
3.59 Mbp; 129x

0 1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50 60 70 80 1000.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

Estimated FDR of called rare (p < 5%) p-mutations (%),
using a log10 scale to highlight order-of-magnitude differences

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

p = 1.00%

p = 2.00%

p = 3.00%

p = 4.00%p = 4.95%

s7.ctg000008c FDR curves for 10 decoy contexts

Decoy context (s92.ctg000105c) and best p for FDR 1%
CP2 (p = 1.52%)
Nonsyn (p = 1.54%)
Full [no context] (p = 1.58%)
CP2 & Tv (p = 1.59%)
Tv & Nonsyn (p = 1.56%)
Tv (p = 1.61%)
Nonsense (p = 1.58%)
Tv & Nonsense (p = 1.57%)
CP2 & Nonsense (p = 1.13%)
CP2 & Tv & Nonsense (p = 1.13%)

Nu
m

be
r o

f c
al

le
d

ra
re

 (p
<

5%
) p

-m
ut

at
io

ns
 p

er
 m

eg
ab

as
e

FDR curves for naïve p-mutation calling (p = 4.99% to p = 1.00%),
using 8 target contigs 1 Mbp with average coverage 100x

142

adjusted to work for datasets assembled by tools other than metaFlye, and with lower

coverage than SheepGut.

Identifying deletion-rich positions in ChickenGut.

In addition to drawing FDR curves for ChickenGut, we also analyze its alignment

in Appendix B.3 in order to show that the pattern of “deletion-rich positions” occurs in

this dataset as well as in SheepGut.

B.5 Applying LoFreq to the SheepGut dataset

Running LoFreq.

To compare LoFreq’s calls with those of NaiveFreq, we ran LoFreq (version 2.1.3.1,

installed using bioconda) on the three selected MAGs. Since LoFreq-NQ did not seem

available in this version of LoFreq, we ran lofreq call with default parameters.

Running LoFreq on these three MAGs took 474,054.00 seconds (over 5 days and

11 hours); however, we note that there have been recent improvements to LoFreq which,

using approximation methods, should decrease this runtime for high-coverage datasets like

SheepGut [92].

Throughout this Appendix (and in Figures 3.3 and B.9), we treat positions where

LoFreq called multiple single-nucleotide variants (i.e. with distinct alternate nucleotides) as

positions with a single freq(pos) value, defining freq(pos) based solely on the second-most-

common nucleotide aligned to a position (section 3.3.2, “Computing mutation spectra”).

This simplifies the process of comparing LoFreq and NaiveFreq’s results, since NaiveFreq

only calls at most one mutation per position. For reference, there exist 0 / 66 / 1 positions

at which LoFreq called multiple variants in CAMP / BACT1 / BACT2, respectively;

since these account for a small fraction of the total variants LoFreq called in these MAGs

(Figure 3.3), ignoring them should not make a large difference in the results shown here.

143

Estimating the FDR of LoFreq’s calls.

Section 3.3.4, “Estimating the FDR of identified rare mutations using the TDA”

demonstrates how the target-decoy approach (TDA) can be applied to estimate the FDR

of a set of mutations; here we illustrate this process using LoFreq outputs. LoFreq called

22, 9,641, and 79 rare mutations in CAMP, BACT1, and BACT2, respectively. At the

frequency threshold p = 2%, NaiveFreq called a similar number of rare p-mutations (17,

10,520, and 100 for CAMP, BACT1, and BACT2, respectively). It turns out that the

sets of rare mutations identified by LoFreq and by NaiveFreq at p = 2% are somewhat

similar: the numbers of overlapping rare mutations between these groups are 15, 8,033,

and 43 for CAMP, BACT1, and BACT2. This suggests that, at least for this dataset,

LoFreq primarily detected rare mutations with frequency of at least 2%. Here, we describe

an analysis of FDRs which suggests that there exist many more lower-frequency rare

mutations.

Using LoFreq’s calls, the mutation rates for each MAG are 5.7× 10−6, 1.5× 10−3,

and 9.4× 10−6 for CAMP, BACT1, and BACT2, respectively. We can estimate the FDR

of LoFreq’s calls for BACT2 (using CAMP as a decoy) as 5.7×10−6

9.4×10−6 ≈ 60.6%, a very large

FDR, indicating that either most identified mutations are false or that selection of CAMP

as the decoy results in a highly inflated estimate of the FDR. Although NaiveFreq’s calls

at the frequency threshold p = 2% result in a lower estimated FDR of 4.4×10−6

1.2×10−5 ≈ 37.0%

for BACT2, this is still a high FDR that raises concerns about downstream analyses such

as phasing.

On the other hand, the estimated FDR of LoFreq’s calls for BACT1 (still using

CAMP as a decoy) is only 5.7×10−6

1.5×10−3 ≈ 0.4%; NaiveFreq at the frequency threshold of

p = 2% has a slightly lower estimated FDR of 4.4×10−6

1.6×10−3 ≈ 0.3%. Although both LoFreq and

NaiveFreq at p = 2% result in the reliable identification of rare mutations with low FDR,

we are still interested in extending the set of identified rare mutations while controlling the

FDR. For example, lowering the frequency threshold of NaiveFreq to p = 0.5% results in

144

Figure B.7. Histograms of freq(pos) for LoFreq’s variant calls across the three selected
MAGs. These histograms demonstrate that, at least in the context of these MAGs in
this dataset, LoFreq seems to mainly call variants with frequency of at least 2%. The
titles of each histogram include the percentage of variants with freq(pos) ≥ 2%, and each
histogram includes a dashed line showing 2%.

the identification of 17,069 rare mutations in BACT1 (an additional 6,549 rare mutations

as compared to p = 2%) with a higher but still relatively low FDR estimate of 2.4%.

Visualizing mutation frequencies of LoFreq’s calls.

The above results, in addition to Figure 3.3, demonstrate that the variants called

by LoFreq are similar to those produced by NaiveFreq at p = 2%. To provide another

perspective on this similarity, Figure B.7 shows histograms of freq(pos) for all variants

called by LoFreq across the three selected MAGs.

B.6 Growth of the number of p-mutations per

megabase as p decreases

Figure 3.2 demonstrates how we can vary p to produce FDR curves for various

contigs. To provide additional context to this analysis, Figure B.8 demonstrates how

decreasing p monotonically increases the number of (rare) p-mutations identified in the

three selected MAGs.

145

Figure B.8. Decreasing p (x-axis) increases the number of identified rare p-mutations per
megabase in the three selected MAGs (y-axis). (Top) Visualization of this relationship
for 485 values of p, using a logarithmic scale on the y-axis. (Bottom) Visualization for
a subset of these values of p, using a linear scale on the y-axis. Since BACT1 has the
lowest average coverage of 1,415x among the three selected MAGs (Appendix B.3), and
since we mandate that NaiveFreq only calls mutations at positions with alt(pos) > 1, both
plots use a minimum p of 2

1,415
≈ 0.15%; this matches the minimum p used in Figure 3.2.

This plot also includes a curve representing a “decoy contig” composed of just the CP2
positions in CAMP located in a single predicted gene. BACT1 and BACT2’s curves are
colored based on the estimated FDR for each value of p, using all of CAMP as a decoy
contig. We limit FDR color variation to within the range [0%, 10%] in order to emphasize
small differences in FDRs. The gray dots in BACT2’s curve in the bottom figure indicate
values of p for which no rare mutations were called, which prevented computation of the
FDR due to division by zero.

146

147

B.7 Codon position analysis details

Normalized codon position mutation plots.

The plots shown in Figure 3.3 are useful when identifying relative patterns of

mutation rates (for example, that the number of mutations in CP2 in a MAG is less than

the number of mutations in CP3); however, since the total amount of positions within

protein-coding genes varies across MAGs, comparing the literal values between plots from

different MAGs is challenging.

We can account for this by dividing each value (the number of single-gene mutated

positions in CP1, CP2, and CP3, as well as the number of mutated positions in non-coding

regions) by the total number of positions, mutated and non-mutated, fitting these criteria.

This transforms the plots so that the y-axis values are now comparable: a y-axis value of

100% for a given CP indicates that all of the single-gene positions in this CP in this MAG

were identified as mutations, while a value of 0% indicates that none of the positions in

this CP in this MAG were identified as mutations. Figure B.9 is an analogue of Figure 3.3

adjusted in this way.

Codon position mutation plot computation details.

We also note that our plots only consider each position in a codon in isolation, so

“mutations” where multiple positions in a codon change at once might inflate these numbers.

For example, as shown in Figure B.12, BACT1 contains a few instances of AGA codons

(coding for Arginine) being substituted for CGC (which also codes for Arginine). Although

we would currently record this in the figures shown earlier as mutations at both CP1 and

CP3, we may instead prefer to discard these mutations entirely. Limiting these analyses

to consider codons where the consensus mutated codon differs by a single nucleotide, as

in the Appendix B.10, may be preferable (although these mutations should be relatively

uncommon).

Although we have not explicitly accounted for the possibility that some of the

148

1 2 3 Non-Coding
0.00%

0.50%

1.00%

0.002% 0.001% 0.003% 0.000%

CAMP: LoFreq

1 2 3 Non-Coding
0.00%

0.50%

1.00%

0.229% 0.148%

0.954%

0.486%

BACT1: LoFreq

1 2 3 Non-Coding
0.00%

0.50%

1.00%

0.001% 0.001% 0.002% 0.009%

BACT2: LoFreq

1 2 3 Non-Coding
0.00%

0.50%

1.00%

0.001% 0.001% 0.002% 0.001%

CAMP: naïve, p = 2%

1 2 3 Non-Coding
0.00%

0.50%

1.00%

0.252% 0.167%

0.970%
0.727%

BACT1: naïve, p = 2%

1 2 3 Non-Coding
0.00%

0.50%

1.00%

0.002% 0.002% 0.002% 0.010%

BACT2: naïve, p = 2%

1 2 3 Non-Coding
0.00%

1.00%

0.003% 0.002% 0.004% 0.014%

CAMP: naïve, p = 1%

1 2 3 Non-Coding
0.00%

1.00%
0.372% 0.249%

1.398%

0.989%

BACT1: naïve, p = 1%

1 2 3 Non-Coding
0.00%

1.00%

0.009% 0.007% 0.010% 0.031%

BACT2: naïve, p = 1%

1 2 3 Non-Coding
0.00%

1.00%

0.013% 0.013% 0.021% 0.064%

CAMP: naïve, p = 0.5%

1 2 3 Non-Coding
0.00%

1.00%
0.426% 0.287%

1.548%
1.163%

BACT1: naïve, p = 0.5%

1 2 3 Non-Coding
0.00%

1.00%

0.048% 0.040% 0.056% 0.097%

BACT2: naïve, p = 0.5%

1 2 3 Non-Coding
0.00%

1.00%

2.00%

0.102% 0.100% 0.121%
0.370%

CAMP: naïve, p = 0.25%

1 2 3 Non-Coding
0.00%

1.00%

2.00%

0.636% 0.496%

1.858% 1.815%
BACT1: naïve, p = 0.25%

1 2 3 Non-Coding
0.00%

1.00%

2.00%

0.216% 0.185% 0.246% 0.410%

BACT2: naïve, p = 0.25%

1 2 3 Non-Coding
0.00%

2.00%

0.471% 0.439% 0.537%
1.237%

CAMP: naïve, p = 0.15%

1 2 3 Non-Coding
Codon Position

0.00%

2.00% 1.390% 1.285%

2.706%
3.294%

BACT1: naïve, p = 0.15%

1 2 3 Non-Coding
0.00%

2.00%
0.729% 0.657% 0.767%

1.383%

BACT2: naïve, p = 0.15%

Nu
m

be
ro

fM
ut

at
ed

Po
sit

io
ns

Nu
m

be
ro

fP
os

iti
on

s

Rare mutation frequencies across codon positions
(each bar normalized by total number of positions in that category)

Figure B.9. Rare mutation frequencies across all first, second, and third codon positions
(as well as non-coding positions) for each of the three MAGs, using the same variant
calling methods as in Figure 3.3 and with y-axis values normalized by the total number of
positions considered in each bar. Although the relative patterns are the same as in Figure
3.3, y-axis values are now comparable across MAGs: this makes clear that BACT1 has
relatively more mutations than either of the other two MAGs.

149

predicted genes we consider are nonfunctional pseudogenes that do not currently experience

selective pressure [7], our clear recapitulation of these expected patterns demonstrates

that these trends hold in practice.

B.8 Nonsynonymous, nonsense, and transversion

decoy contexts

From a decoy of positions to a decoy of mutations.

We consider all positions occurring within a predicted protein-coding gene (in

CP1/CP2/CP3), ignoring positions that are located within multiple predicted genes due to

gene overlap. An arbitrary position i has three possible mutations into another nucleotide,

based on this position’s CP (three possibilities) and its parent codon (64 possibilities). We

note this paper assumes use of the standard genetic code.

For an arbitrary position i, Si of these three mutations are synonymous and Ni of

these three mutations are nonsynonymous. For example, CP3 in the Lysine-coding codon

AAA has Si = 1 (AAG still codes for Lysine) and Ni = 2 (AAT and AAC both code for

Asparagine).

Similarly, if we limit our focus to positions i within the 61 sense codons (ignoring

the three stop codons TAA, TAG, and TGA), we can define the values NNSi and NSi,

corresponding respectively to non-nonsense and nonsense mutations. For example, CP1 in

AAA has NNSi = 2 (neither CAA nor GAA are stop codons) and NSi = 1 (TAA is a

stop codon).

Analogously to our computation of mutation rates for more traditional decoy contigs

(of either an entire MAG, or just the CP2 positions within a MAG), we can compute

a mutation rate for the decoy contig of possible nonsynonymous or nonsense mutations

within a MAG.

150

Computing (non)synonymous mutation rates.

We define the rate of nonsynonymous mutations as RN = MN∑
i Ni

, where MN is the

total number of mutations observed in the decoy contig that are nonsynonymous with

respect to the position’s parent codon and
∑

i Ni is the sum of Ni across all candidate

mutation positions i located within the decoy contig. RN can be used in place of ratedecoy

when estimating the FDR of identified mutations.

For comparison, we can compute a corresponding rate for synonymous mutations

as RS = MS∑
i Si

. Like RN , RS is interpretable as a ratio of observed to possible mutations.

Figure B.10 shows plots of RS versus RN , illustrating that generally RS > RN .

We note that the RS and RN values bear resemblance to the commonly used Ka

and Ks values [79]; in computing RS and RN , we have attempted to adapt these ideas to

the aggregate analysis of different strains of a MAG, rather than the analysis of distinct

homologous genes.

Computing (non)sense mutation rates.

We define RNNS and RNS as ratios of observed to possible non-nonsense and

nonsense single-nucleotide mutations, computed analogously to RS and RN (albeit limited

to positions located within the 61 sense codons). These values can be interpreted similarly

to RS and RN , and are also visualized in Figure B.10. We expect to see more non-nonsense

than nonsense codon mutations in real sequencing data, since nonsense mutations are

usually harmful: and this is generally the case, although this pattern weakens as we reduce

p.

Computing transversion mutation rates.

As above, consider an arbitrary position i in a contig (not necessarily located

within a predicted gene). The nucleotide located at i has three possible mutations into

another nucleotide: of these three possible mutations, two are transversions (mutations

from a purine into a pyrimidine, or vice versa) and one is a transition (a mutation from

151

one purine into another, or from one pyrimidine into another) [204]. Although there

are twice as many possible transversion mutations as transition mutations, transition

mutations generally occur more often than transversions [204, 94], to the point that variant

callers’ outputs are often evaluated using the ratio of transitions to transversions [206, 209].

Transversion mutations are thus an attractive option for constructing a decoy context,

similar to nonsynonymous or nonsense mutations. We can compute the ratio of observed

to possible transversion mutations analogously to how we compute RN and RNS above.

Combining decoy contexts.

Figure 3.2 demonstrates decoy contexts using CP2, nonsynonymous, nonsense, and

transversion mutations, as well as various combinations of these contexts. In total, this

figure shows ten distinct FDR curves: here we provide some details about the combinations

of decoy contexts that these curves represent.

These combinations can be thought of as intersections. The decoy context of “CP2”

and “Transversion,” for example, will consider only possible transversion mutations located

within CP2 positions. So, although the decoy context of just transversion mutations

considers all positions in the decoy contig, the combination of “CP2” and “Transversion”

implies focusing solely on positions located within CP2 of a single predicted gene.

If we consider a set containing the entries {“CP2”, “Transversion”, “Nonsynony-

mous”, “Nonsense”}, the resulting power set has 24 = 16 subsets, or combinations of these

contexts. However, not all of these subsets are distinct from each other in practice: for

example, all nonsense mutations are also nonsynonymous, so we can ignore combinations

that include both “Nonsynonymous” and “Nonsense.”

We can also ignore {“CP2”, “Transversion”, “Nonsynonymous”} because it is

identical to {“CP2”, “Transversion”}. In the standard genetic code, there is only one

possible synonymous CP2 mutation (TAA ←→ TGA, both of which are stop codons):

since A ←→ G is a transition mutation, the addition of the “Nonsynonymous” context to

152

{“CP2”, “Transversion”} does not change anything.

We are now left with eleven distinct decoy contexts and combinations thereof. The

strainFlye fdr estimate command can produce up to eleven FDR curves, using any

of these contexts. Although strainFlye supports computing it, we note that one of these

eleven combinations ({“CP2”, “Nonsynonymous”}) is omitted from Figure 3.2. This is

because—although this decoy context is technically different from the decoy context of just

“CP2”—it is very difficult to visually distinguish these two contexts on a plot, since they

only differ in whether or not they count the aforementioned TAA ←→ TGA mutation.

Details in the use of nonsynonymous, nonsense, and transversion decoy
contexts.

We ignore positions that are “unreasonable” (discussed in Appendix B.12), to

simplify our interpretation of mutations. For example, when we identify nonsense mutations,

we assume directionality in this mutation—i.e. that the mutation goes from a sense codon

to a stop codon, and not the other way. The “Full” and CP2 decoy contigs do allow

unreasonable positions; however, there are in total only 169 unreasonable positions across

all three selected MAGs (for reference, 155 / 169 of these are in BACT1), so our exclusion or

inclusion of them should not make much of a difference in our estimated FDRs. Anecdotally,

these positions seem to be mostly artifacts of low-coverage regions.

When computing nonsynonymous and nonsense mutation rates, we note that our

consideration of the positions within a codon in isolation ignores the possibility of multiple

positions within a codon being mutated simultaneously—for example, if CP1 and CP2 of

the codon AGT (coding for Serine) are mutated into the codon TCT, these mutations are

ultimately synonymous since TCT still codes for Serine. However, viewed individually,

neither of these two mutations would be treated as synonymous, since neither TGT

(Cysteine) nor ACT (Threonine) codes for Serine. This is a limitation of our approach.

Relatedly, we do not explicitly account for alternative start codons. If a predicted

gene begins with a codon like TTG or GTG, then we will treat this codon as if it coded

153

for Leucine or Valine, respectively.

Multiallelic positions also pose a challenge, because NaiveFreq only performs “binary”

mutation calling: it only classifies a position as mutated or not, based on a single alternate

nucleotide. It thus cannot call multiple mutations (into multiple alternate nucleotides) at a

single position, although more sophisticated tools like LoFreq [213] can do this. This means

that these mutation rates may be slightly lower than they would be if we had accounted

for multiple mutations at the same position. (However, as discussed in Appendix B.5,

these sorts of mutations should be relatively rare.)

Lastly, across all 61 · 3 = 183 positions i in CP1, CP2, or CP3 of the 61 sense

codons, there are
∑

i NNSi = 526 non-nonsense mutations and only
∑

i NSi = 23 nonsense

mutations [131]. We emphasize that, since the number of nonsense mutations is much

smaller than the number of non-nonsense mutations, the use of nonsense mutations for

FDR estimation should be done with caution. For example, although a decoy contig that

happens to have no nonsense mutations at all may imply a FDR estimate of 0%, this is

not necessarily a useful estimate.

Barplots of (non)synonymous and (non)sense mutation rates.

Figure B.10 shows plots of the rates of synonymous vs. nonsynonymous p-mutations

and the rates of non-nonsense vs. nonsense p-mutations as p decreases. This figure is

analogous to Figure 3.3 in section 3.3.3, “The target-decoy approach for estimating the

FDR of identified mutations”: both figures show how expected mutational patterns mostly

remain constant across the three selected MAGs as we adjust p, with some exceptions.

B.9 Identifying mutations based solely on read

counts

As an alternative to p-mutation calling, given a read count threshold r ≥ 1, NaiveFreq

classifies pos as an r-mutation if alt(pos) ≥ r. This is implemented in the strainFlye call

154

Figure B.10. Barplots of RS, RN , RNNS, and RNS for various values of p. Since these
values are all ratios of observed to possible mutations in a MAG, these ratios increase
monotonically as p decreases (causing NaiveFreq to call more p-mutations). The text
above the bars for all rows above the bottom row indicates the number of called mutations
of each type for each MAG at each value of p; the bottom row shows the number of
possible mutations of each type for each MAG. Notably, the relative distributions of
possible synonymous vs. nonsynonymous and non-nonsense vs. nonsense mutations are
very similar across the three selected MAGs. The ratio of RS to RN , and the ratio of
RNNS to RNS, also vary with p. Due to selection, we would generally expect RS > RN

(i.e. relatively more synonymous than nonsynonymous mutations), and we would also
expect RNNS > RNS (more non-nonsense than nonsense mutations). The titles of plots
where either of these expected patterns do not hold are highlighted in red, like in Figure
3.3. This is the case for CAMP for p ∈ {1%, 0.5%, 0.25%, 0.15%}.

155

156

r-mutation command, which functions analogously to the strainFlye call p-mutation

command discussed in the main text.

It is sometimes simpler to think in terms of counts than in frequencies, and in this

sense r-mutations can have some use. The set of all r-mutations for a large value of r

such as r = 100 provides, for example, an easy-to-interpret set of usually indisputable

mutations (albeit one that will almost certainly miss many real rarer mutations).

Though r-mutation identification can be useful in certain circumstances, we gen-

erally caution against using r-mutations in the context of our FDR estimation methods.

r-mutation identification does not explicitly account for coverage: contigs with higher

coverages can accumulate many more r-mutations at a given r simply by chance. (For

example, if a contig has coverage 1,000,000x, then its set of r-mutations at r = 100 becomes

much less convincing.) p-mutations, while not perfect, adjust the “burden of proof” needed

to call a p-mutation at a position based on this position’s coverage—this mitigates the

problem somewhat.

B.10 Constructing and visualizing mutation matri-

ces

Here we describe the construction and visualization of codon and amino acid

mutation matrices for a given MAG, as discussed in section 3.3.6, “Codon and amino acid

mutation matrices”. We provide the strainFlye matrix module for the construction

of these matrices. Similarly to [201], we define a given codon as mutated or not based

on considering the frequencies of 3-mers that span this codon in the alignment: this is

analogous to the process of classifying individual positions in a MAG as p-mutated or not,

as discussed in section 3.3.2, “Computing mutation spectra”.

157

Identifying codon p-mutations.

Given a threshold p ∈ (0%, 50%], we classify a codon as p-mutated analogously to

how NaiveFreq classifies a position as p-mutated: in the case of a codon, we consider all

three-nucleotide sequences aligned to this codon’s three positions in a MAG.

We consider each codon within each predicted gene within a MAG, allowing the

consideration of the same position(s) multiple times if they are present in overlapping genes.

(Although we considered limiting these matrices to codons only present in a single gene, we

elected not to do this because this might bias our analyses against the inclusion of codons

located near the ends of genes—such as Stop codons.) We consider reads aligned to the

MAG that cover all three positions in this codon within a single linear alignment, where

every position in the read’s alignment to this codon is a match or a mismatch operation. A

read’s alignment spells a mutated 3-mer in this codon if the read’s sequence aligned to the

codon differs from the reference codon sequence. For each codon, we compute all matched

and mismatched (mutated) 3-mers aligned to the codon from covering read alignments.

After computing this information for every codon, we then ignore codons where

the most common aligned 3-mer (or, in the case of a tie, any of the most common aligned

3-mers) at this codon is not exactly the same as the reference codon’s 3-mer. This check

allows us to ignore low-coverage or otherwise difficult-to-interpret codons where it is

unclear how to define a “mutation” from this codon into another, and is analogous to how

we also ignore “unreasonable” positions in other analyses in this paper. We implicitly

make the assumption that these mutations occur from the reference codon.

For all codons that pass the above check, we then classify the codon as mutated

or not similarly to how we classified positions as mutated in section 3.3.2, “Computing

mutation spectra”: if the maximum-frequency mutated 3-mer aligned to the codon has

a relative frequency (analogous to freq(pos)) greater than or equal to some threshold p

and an absolute frequency (analogous to alt(pos)) greater than 1, we define the codon as

p-mutated. Unlike our use of NaiveFreq in FDR estimation, we consider both rare and

158

indisputable p-mutated codons.

Our exclusion of codons where the reference 3-mer is not also the most common

aligned 3-mer means that, as with the definition of freq(pos) in section 3.3.2, “Computing

mutation spectra”, the relative frequency of any p-mutated codon is constrained to the

range of (0%, 50%].

Once we identify codon mutations, we can then compute codon mutation frequencies

and construct a mutation matrix.

Computing codon mutation frequencies.

Using these identified codon mutations, we compute the total number of (X, Y)-

mutations (the number of times codon X mutates into a different codon Y) and the total

number of X-mutations (the number of times X mutates into any of the other 63 codons,

including Y). We define the codon mutation frequency of X into Y as the number of

(X, Y)-mutations divided by the number of X mutations.

Visualizing codon mutation frequencies.

Figure B.11 is a 64x64 codon mutation matrix representing all single-nucleotide

codon mutation frequencies throughout BACT1, using the threshold p = 0.5% to näıvely

call codons as p-mutated. Figure B.11 reveals large variations in the mutation rates of

various codons encoding the same amino acid, indicating that codon-based matrices may

be more sensitive for strain comparison. For example, the Glycine-encoding codons GGA

and GGG have mutation rates 3% and 11%, respectively. Interestingly, our analysis reveals

that rare codons typically have much higher mutation rates than frequent codons for the

same amino acid.

Figure B.12 shows “full” codon mutation matrices. The main differences between

these matrices and the matrix shown in Figure B.11 are the inclusion of all codon

mutations in each row (not just the 9 single-nucleotide mutations from a given codon); the

representation of mutations in the matrix and Syn column as raw numbers, rather than

159

Figure B.11. The 64x64 single-nucleotide codon mutation matrix for BACT1 (using the
frequency threshold p = 0.5%). The numbers on the main diagonal show the number of
times a codon occurs in all genes in the MAG, rounded to the nearest thousand (for codons
that occur less than 1,000 times, the raw number is shown). Percentages off of the main
diagonal show the fraction of times a given mutation from codon X into codon Y was
observed, relative to the total number of single-nucleotide codon mutations from codon
X in this MAG. The sum of the non-diagonal entries in each row of the matrix, then,
should be approximately 100%. The text fonts representing numbers in the non-diagonal
cells of the matrix are colored white or black if the mutation represented in this cell is
nonsynonymous, and light green or dark green if this mutation represented in this cell is
synonymous. The labels of the matrix are annotated with both the codon sequence and the
corresponding amino acid / stop codon translation, abbreviated as a single letter [32]. The
column labelled Syn shows the sums of synonymous single-nucleotide mutation percentages
across each row in the matrix (these sums are also included as text within these columns).
The column labelled “Mutation Count” shows the total number of mutations of this row’s
codon in BACT1’s genes (including both single-nucleotide and non-single-nucleotide codon
mutations). The column labelled “Mutation Freq” shows “Mutation Count” for each
codon’s row divided by the total number of occurrences of this codon in BACT1’s genes.
The gradient on the right is a legend mapping percentages to colors in the viridis colormap
[179]. The shown matrix only reflects single-nucleotide codon mutations; however, a “full”
version of this matrix is shown in Figure B.12.

160

161

Figure B.12. “Full” codon mutation matrices for the three selected MAGs (using the
frequency threshold p = 0.5%).

percentages; the presence of a NonSyn column instead of the “Mutation Count” column;

and the lack of color in the codon mutation rate column (since coloring percentages

using the same scale by which the raw numbers are colored is an “apples-to-oranges”

comparison).

Visualizing amino acid mutation counts.

Figure B.13 shows the 21x21 amino acid / stop codon mutation matrices for each

of the three selected MAGs, derived from their corresponding codon mutation matrices

162

shown in Figure B.12. As with Appendix B.8, we do not account for alternative start

codons.

B.11 Diversity index details

Here we provide further information on diversity indices introduced in section 3.3.7,

“Diversity indices”.

Defining “sufficient coverage” for p-mutation calling.

Here we assume that strains of a given organism are sequenced exhaustively, and

that the alignments of all reads are correct. Although these assumptions may be broken

in practice [123], they should be acceptable in the context of high-coverage HiFi datasets.

Given these assumptions we would expect to see, for each strain with population frequency

p, p · C copies of this strain’s sequence at a given position in the alignment (where C is

the coverage at the position). For example, a strain with population frequency p = 25%

would on average be represented at 25x coverage at a given position in the alignment

with coverage C = 100x; similarly, a strain with population frequency p = 0.8% would on

average be represented at 8x coverage at a position with coverage C = 1,000x.

We thus define the minimum sufficient coverage for some p as minSuffCov =

minReadNumber
p

, where minReadNumber (default value 5) is a small positive parameter and

p is represented as a number in the range (0, 0.5] rather than as a percentage. That is, if

we want to find mutations with a given population frequency using solely the sequencing

data at hand, without taking into account further biological insights about error rates,

we need to have sufficient sequencing coverage to where we would expect to observe

minReadNumber copies of these mutations [191]. This relation between minSuffCov

and p makes clear that the burden of proof for calling a relatively “common” mutation (e.g.

p = 50%) is much lower than the burden of proof for calling a relatively “rare” mutation

(e.g. p = 0.5%).

163

Figure B.13. The 21x21 amino acid / stop codon mutation matrices derived from codon
mutation data for the three selected MAGs (using the frequency threshold p = 0.5%).
Percentages in each matrix show the number of times a given mutation from one amino
acid / stop codon into another was observed based on the codon mutation data (including
both single-nucleotide and non-single-nucleotide codon mutations), divided by the total
number of mutations (both synonymous and nonsynonymous) seen from this row’s amino
acid / stop codon. The denominators of these percentages for each row are represented in
the “Mutation Count” column. The numbers in the “Occurrence Count” columns show the
number of times an amino acid / stop codon occurs in all genes in a MAG. The numbers
in the “Mutation Freq” columns show “Mutation Count” divided by “Occurrence Count”,
analogously to the “Mutation Freq” column in Figure B.12. Numbers are colored white or
black arbitrarily, in order to improve legibility on dark or light cells. Synonymous codon
mutations (e.g. GCA into GCC, both of which code for Alanine) are represented as values
on the main diagonals. Amino acids are referred to by their single-letter abbreviations [32],
with the ∗ character (located in the final row and column of each matrix) representing
stop codons. The gradients on the right are legends mapping percentages to colors in the
viridis colormap [179].

164

Defining “sufficient coverage” for r-mutation calling.

Appendix B.9 details the identification of r-mutations, which are called using read

counts rather than frequencies. There is less need to impose an additional requirement of

sufficient coverage for these particular mutations.

However, knowledge of which positions are or are not sufficiently-covered has other

uses—for example, as shown below, when defining entire contigs as sufficiently-covered

or not. We thus define a position as sufficiently-covered to call a given r-mutation using

a quantity named minCovFactor (default value 2): the minimum sufficient coverage for

some r is defined as minSuffCov = minCovFactor ·r. Since r corresponds to the count of

the second-most-common nucleotide at a position, the default value of minCovFactor = 2

means that this condition will always hold if we have called an r-mutation in the first

place (although it will also hold for many positions at which there exist no r-mutations).

Computing the diversity index for sufficiently-covered contigs.

We have shown above how to compute the minimum sufficient coverage for calling

p- or r-mutations for arbitrary positions in a contig, when computing diversity indices.

We (somewhat crudely) define a contig G itself as sufficiently-covered if at least 50% of its

positions are sufficiently-covered.

We define the diversity index for a sufficiently-covered contig G as the number of

called p- or r- mutations in the sufficiently-covered positions in G, divided by the total

number of sufficiently-covered positions in G. If a contig is not sufficiently-covered, we do

not define a diversity index for it.

Information about high-diversity-index edges.

Figure 3.4 reveals a number of edges in SheepGut with high diversity indices. Here

we provide further information about these edges in order to help in the interpretation of

this figure.

For reference, the most diverse edge at p = 50% is edge 3091 in the graph, which

165

has a length of 1 Mbp and a coverage (reported by metaFlye) of 40x. Kaiju [124] classified

this edge as Dorea formicigenerans.

The most diverse edge at p = 25% is edge 15931, which has a length of 1.1 Mbp

and a coverage of 33x. Kaiju classified this edge as an uncultured Flavonifractor sp.

The most diverse edge for p ∈ {10%, 5%, 2%, 1%, 0.5%} is edge 3030, which has

a length of 1.9 Mbp and a coverage of 1,011x. Kaiju classified this edge in the phylum

Firmicutes.

The most diverse edge at p = 0.25% is edge 23917, which has a length of 1 Mbp

and a coverage of 1,973x. Kaiju classified this edge as Phocaeicola vulgatus.

Although edges 3030 and 23917 both have very high coverage, neither were selected

for the analyses in the rest of this paper because these edges were located in the largest

“hairball” component of the assembly graph. (Edges 3091 and 15931 are also located in the

“hairball,” for reference.)

B.12 Hotspot genes in the three selected MAGs

For each gene in each MAG, we can compute values for each gene describing the

mutations observed for the positions in this gene. These values include the mutation rate

as well as more specific values such as the nonsynonymous mutation rate (defined as the

fraction of mutated positions in the gene where the highest-frequency alternate nucleotide

causes a nonsynonymous mutation in the position’s codon within the gene; more details

are described later in this Appendix).

For convenience’s sake, here we ignore positions where the reference nucleotide

is not also the consensus (i.e. most frequently seen in the alignment at this position)

nucleotide. Positions that do not meet this criteria, termed “unreasonable” positions, are

not included as mutations when computing the mutation rates shown in Table B.2. This

simplifies the computation of the nonsynonymous mutation rate, since it becomes easier to

166

say that a given nucleotide represents a mutation “from the reference”; this is analogous

to how certain codons are ignored in the Appendix B.10.

Out of a total of 1,297 / 1,761 / 2,567 genes in CAMP / BACT1 / BACT2,

respectively, 110 / 1,511 / 677 genes have nonzero p-mutation rates (using the threshold p =

0.5%). Of these genes, 98 / 1,171 / 566 genes have nonzero nonsynonymous mutation rates.

(The rounded average gene lengths for each MAG are 919 / 1,106 / 897 bp, respectively.)

To assist in identifying specific genes of interest, Table B.2 presents information about

the ten genes with the highest mutation rates for each of the selected MAGs. Given this

information, we can now investigate the mutation spectra of these genes in an attempt

to learn more about the strain(s) of these MAGs present in the dataset, for example as

shown in Figure 3.5.

Computing the nonsynonymous mutation rate of a gene.

Table B.2 makes use of the nonsynonymous mutation rate, a value we defined for

each gene. Here we describe some minor details of the computation of this value.

When computing this metric we consider all mutated positions from all codons

in a gene. An example gene containing 99 positions—with two mutated positions, both

in the same codon within the gene, and each causing a nonsynonymous mutation by

themselves—would have a nonsynonymous mutation rate of 2/99 ≈ 2.02%.

We note that our definition of a mutation as “nonsynonymous” assumes that the

contig in which this mutation occurs follows the standard genetic code, and that we do

not explicitly account for alternative start codons. These assumptions match those used in

Appendices B.8, “Nonsynonymous, nonsense, and transversion decoy contexts” and B.10,

“Constructing and visualizing mutation matrices”.

A rare corner-case in this definition occurs when a given mutated position has more

than one highest-frequency alternate nucleotide. For example, we could imagine CP3 of

the codon CAA. This codon codes for the amino acid Glutamine. If, in CP3 of this codon,

167

Table B.2. The ten most mutated genes in the three selected MAGs (using the threshold
p = 0.5% to classify a position as mutated or not). The “#” column shows the number
assigned to each gene in the SCO files output by Prodigal for each MAG. We sort genes
by their total mutation rate (the rightmost column); the mutation rates for the top ten
genes in BACT1 are much higher than those from the other two MAGs.

168

CAMP

Left Right Length (bp) # Nonsyn. Mutation Rate Mutation Rate
1,208,927 1,210,075 1,149 1217 0.26% 2.96%
1,053,365 1,055,938 2,574 1056 0.31% 0.97%
1,197,031 1,197,267 237 1205 0.84% 0.84%
1,287,424 1,287,777 354 1295 0.56% 0.56%
890,033 890,569 537 886 0.37% 0.56%
223,065 223,976 912 229 0.55% 0.55%

1,056,052 1,059,237 3,186 1057 0.16% 0.50%
493,154 493,558 405 477 0.49% 0.49%

1,231,190 1,231,402 213 1243 0.00% 0.47%
684,152 684,607 456 674 0.44% 0.44%

BACT1

Left Right Length (bp) # Nonsyn. Mutation Rate Mutation Rate
1,041,656 1,042,084 429 868 16.32% 20.05%
206,606 207,304 699 184 12.73% 18.74%

1,402,353 1,402,718 366 1185 9.29% 16.94%
266,551 267,051 501 241 7.78% 15.77%

1,326,288 1,327,073 786 1118 7.00% 15.27%
724,871 725,443 573 586 10.65% 15.18%

1,458,950 1,460,104 1,155 1233 9.09% 15.06%
1,041,043 1,041,654 612 867 9.64% 14.38%
1,156,180 1,157,316 1,137 966 9.15% 14.16%
601,203 602,750 1,548 486 8.07% 13.95%

BACT2

Left Right Length (bp) # Nonsyn. Mutation Rate Mutation Rate
2,797,869 2,798,756 888 2561 0.90% 4.84%
2,512,322 2,513,143 822 2288 0.49% 3.77%
1,696,990 1,697,364 375 1575 1.33% 2.13%
2,216,402 2,216,542 141 2030 1.42% 2.13%
2,626,301 2,626,774 474 2420 1.48% 1.90%
177,371 177,700 330 155 1.21% 1.82%
660,412 660,522 111 646 1.80% 1.80%

2,510,205 2,512,007 1,803 2286 0.50% 1.72%
2,101,831 2,102,010 180 1926 1.11% 1.67%
269,131 269,250 120 249 1.67% 1.67%

169

100 aligned reads have an A, 10 aligned reads have a C, 10 aligned reads have a G, and

1 aligned read has a T, then this position will be labelled as a p-mutation for p = 0.5%,

since 10/121 ≈ 8.26%, which is greater than 0.5%. However, it is ambiguous whether

or not this mutated position causes a nonsynonymous mutation: C and G are tied as

the highest-frequency alternate nucleotide, and CAC causes a nonsynonymous mutation

(coding for Histidine) but CAG does not cause a nonsynonymous mutation (coding for

Glutamine).

In the case of this sort of tie, the alternate nucleotide selected for determining

whether or not this mutation is nonsynonymous or not is arbitrary. However, we expect

that this case should generally be rare.

Coverages of highly-mutated genes.

Figure B.14 shows the coverages of the highest-mutation-rate genes for each of

the three selected MAGs. This figure demonstrates that the coverages these genes are

uniformly high, and that the mutation spectra of these genes (shown in Figure 3.5 in the

main text) are thus reliable.

B.13 Identifying strains in the most mutated gene

of BACT1

The most mutated gene in BACT1 (gene 868 of length 429 bp) exhibits a complex

pattern of mutations illustrated in Figure 3.5 (middle subfigure) with three main levels of

mutated positions, at approximately 1.5%, 4.5%, and 6.5%. Below we attempted to group

all 1,273 reads spanning this gene into clusters representing putative strains.

We transformed each read into a 429-dimensional binary vector, where the i-th

value of a read is set to 1 if this read differs from the BACT1 reference MAG (with a

mismatch or deletion/skip) at the i-th position of gene 868, and is set to 0 otherwise. We

then performed k-means clustering on these 429-dimensional binary vectors for k ∈ [1, 20]

170

1,209,000 1,209,200 1,209,400 1,209,600 1,209,800 1,210,000

4,400

4,450

4,500

4,550

CAMP: Gene #1217
Left end 1,208,927, right end 1,210,075 (length 1,149 bp), strand +

Coverage ranges from 4,381x to 4,570x (average: 4,519.93x)
Codon Position 1
Codon Position 2
Codon Position 3

1,041,700 1,041,800 1,041,900 1,042,000 1,042,100
1,220

1,240

1,260

1,280

1,300

1,320

1,340

M
ism

at
ch

es
 +

 M
at

ch
es

BACT1: Gene #868
Left end 1,041,656, right end 1,042,084 (length 429 bp), strand +

Coverage ranges from 1,225x to 1,341x (average: 1,296.73x)

2,798,000 2,798,200 2,798,400 2,798,600 2,798,800
Sequence position (1-indexed)

3,300

3,325

3,350

3,375

3,400

3,425

3,450

BACT2: Gene #2561
Left end 2,797,869, right end 2,798,756 (length 888 bp), strand

Coverage ranges from 3,300x to 3,451x (average: 3,427.71x)

Coverages of three highly-mutated genes

Figure B.14. Scatterplot showing mismatches(pos) + matches(pos), also known as
coverage, for each position pos within the highest-mutation-rate genes in CAMP, BACT1,
and BACT2. As in Figure 3.5, positions are colored by their codon position within the
parent genes shown here. This plot demonstrates that the coverages of these genes are all
high (≥ 1,000x) and somewhat uniform. Strangely, coverage increases slightly over the
length of the highest-mutation-rate gene in CAMP; although this may just be a sequencing
artifact, it may indicate that this genome is being actively replicated, since such genomes
have higher coverage near the origin of replication [99]. (We thus highlight the location of
this gene in Figure B.17 in the Appendix B.16.) The coverage of the highest-mutation-rate
gene in BACT1 contains more dramatic “jumps,” although these are primarily due to this
plot not counting deletions towards coverage.

171

using scikit-learn [147]. A plot of the performance of each of these runs of k-means

clustering, assessed using scikit-learn’s “intertia” measurement, is shown in Figure B.15

(left). This plot contains a clear “elbow” at k = 4 after which improvements in classification

begin to plateau, indicating that 4 is likely an acceptable number of clusters [69]. This

corroborates the mutation spectrum of this gene in Figure 3.5 (middle), which contains

the aforementioned three rough levels of mutated positions’ frequencies (in addition to a

fourth level of mostly un-mutated positions). In order to provide an additional view of how

these reads’ vectors vary, Figure B.15 (right) shows a principal component analysis plot

of a matrix of the binary vectors, with points colored by their assigned cluster from the

k-means clustering algorithm at k = 4. The majority of reads belong to the first cluster,

which contains relatively “un-mutated” reads.

We note that the first draft of this analysis did not consider deletions/skips in a

read at a given position in the gene to result in a 1 in that read’s binary vector at this

position (in these cases, the vector would contain a 0 at this position). This version of the

analysis resulted in the selection of an “elbow” at k = 3 clusters. From manual inspection

in IGV [190], the reads aligned to this gene contain many deletions; this is why we have

presented this particular analysis in a way that considers deletions as mutations.

B.14 Plots of mutation locations

Figure B.16 visualizes the locations of mutations in CAMP, BACT1, and BACT2.

Although mutations are spread throughout these MAGs, especially for small values of p,

there are obvious coldspots. For example, there are two particularly large regions without

any identified p-mutations located near 1.6–1.8 Mbp in BACT1: these regions have no

p-mutations even when p = 0.5%, a surprising result. Appendix B.15 further investigates

the coldspots in BACT1.

Hotspots can also be identified from Figure B.16, although they are less easy than

172

Figure B.15. (Left) Plot of k versus k-means clustering performance for the 1,273
429-dimensional binary vectors representing reads spanning gene 868 in BACT1. Per the
scikit-learn documentation at https://scikit-learn.org/stable/modules/generated/sklearn.cl
uster.KMeans.html, the “inertia” measurement describes the “sum of squared distances of
samples to their closest cluster center” [147]; the use of inertia as the clustering evaluation
metric is based on the tutorial given at https://www.analyticsvidhya.com/blog/2021/01/i
n-depth-intuition-of-k-means-clustering-algorithm-in-machine-learning/. We highlight
k = 4 here, which represents a clear “elbow” in this plot. (Right) Principal component
analysis (PCA) plot of the 1,273 429-dimensional binary vectors. Each vector’s point is
colored by its assigned cluster from k-means clustering with k = 4, using the “Dark2”
color map from ColorBrewer [19]. The two-dimensional visualization provided by PCA
mostly separates the four clusters. We performed PCA using scikit-learn [147].

173

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://www.analyticsvidhya.com/blog/2021/01/in-depth-intuition-of-k-means-clustering-algorithm-in-machine-learning/
https://www.analyticsvidhya.com/blog/2021/01/in-depth-intuition-of-k-means-clustering-algorithm-in-machine-learning/

Figure B.16. Locations of p-mutations throughout the three selected MAGs. Black or
green vertical lines indicate p-mutations; black lines correspond to mutations located within
at least one gene, while green lines correspond to mutations located within intergenic
regions. The values of p shown here are the same as those shown in the context of the
diversity index plots in Figure 3.4. p-mutations are only identified for sufficiently-covered
positions (represented by gray horizontal bars); insufficiently-covered positions are marked
with red horizontal bars instead. We determine “sufficient coverage” as described in
Appendix B.11 for p-mutations, using minReadNumber = 5. As was also the case in
Figure 3.4, BACT1 is not sufficiently covered for p = 0.25% (the minimum sufficient
coverage for this value of p is 5

0.0025
= 2,000x). These plots are a very coarse, high-level

way of visualizing mutation locations across these MAGs, and identifying small single-
nucleotide-level details is challenging due to the limited resolution available. However, these
plots are nonetheless useful for making high-level comparisons between the distributions of
p-mutations across these MAGs. We note that MAGs are represented here linearly rather
than circularly, a distinction from the figures in [175, 213]. This representation is used
both to simplify the comparison of many different sequences and values of p, and because
the sequence corresponding to CAMP is not completely assembled into a single circular
sequence (as discussed in Appendix B.2).

174

175

coldspots to distinguish in this visualization. For example, when p = 10% and when

p = 5%, 34 of the 35 p-mutations in CAMP are represented by the single black bar located

near the 1.2 Mbp point in the MAG: these 34 mutations, it turns out, are all contained

within a single highly-mutated gene in CAMP (shown in Figure 3.5).

B.15 Investigating coldspots

Taxonomic classifications of long coldspots in BACT1.

At p = 0.5%, and without attempting to call p-mutations at positions with coverage

less than 1,000x (Figure B.16), BACT1 contains 7 “coldspots” corresponding to regions of

length ≥ 5,000 bp without any p-mutations. Table B.3 describes the location, length,

average coverage, and taxonomic classifications of each of these coldspots.

We suspected that some of these coldspots might correspond to conserved sequences

(e.g. parts of 16S rRNA genes) that would not vary much across genomes. To check this,

we ran barrnap [173] on BACT1; although barrnap predicted multiple rRNA genes, none of

these predicted genes’ coordinates intersected with any of the seven coldspots investigated

here. The cause of these coldspots is thus still unclear. The two coldspots for which

BLASTN identified matches to viral genomes may indicate recent prophage insertions that

could justify the lack of mutations in these regions [114], although additional work would

be needed to prove this.

Evaluating statistical significance of coldspots.

Although it is tempting to assume that long “gaps” between mutations in a contig

have some biological meaning, gaps between mutations could arise by chance. To provide

additional context for the gaps identified in a dataset, the strainFlye spot cold-gaps

command can compute a simple p-value describing the probability of the longest gap in a

contig being at least a certain length. The computation of this p-value relies on the null

hypothesis that each position in the contig is defined as mutated or not independently,

176

using a fixed contig-specific mutation rate. This assumption reduces the problem of

computing this p-value to the classical problem of analyzing the distribution of the length

of the longest run of heads in a sequence of coin tosses [10].

For each contig with at least one mutation and at least one gap meeting a user-set

minimum length threshold, we define the mutation rate of this contig, q, as the ratio of

mutated positions in this contig (m) to the total number of positions in this contig (n) [56].

Under our null hypothesis, the mutation status of each position in a contig can be thought

of as the result of a Bernoulli trial with probability of “failure” (the position is mutated)

set to q = m
n

, and probability of “success” (the position is not mutated) set to p = 1− q.

If the null hypothesis were true, then the number of non-mutated positions in a contig

should thus follow the Binomial distribution with expected value np = n
(
1− m

n

)
= n−m.

This null hypothesis is an obvious oversimplification that will be broken in practice:

for example, Figure 3.3 makes clear that the probability of a position being mutated is

not the same for all positions in a contig. However, we submit that it is an acceptable

approximation, especially since these p-values are intended only as a starting point for

further analysis of these gaps.

For each contig, we can compute the probability of the longest gap in the contig

(equivalently, the longest run of “successes” in a sequence of Bernoulli trials) using the

final equation shown in [10]. We allow the user to choose between attempting to compute

exact p-values using the equation from [10], or using the approximation method shown in

[137]. For example: using NaiveFreq p-mutation calling at p = 0.5% (and ignoring whether

or not sufficient coverage exists, unlike in Table B.3 and Figure B.16), the longest coldspot

in BACT1 has length 19,167 bp (corresponding to the fifth coldspot listed in Table B.3).

The probability of seeing a gap at least this long by chance, considering BACT1’s length

and the amount of p = 0.5% mutations contained therein, is 6.0498× 10−91 (computed

using the exact method from [10]).

We note that these p-values come with some caveats in addition to the obvious

177

Table B.3. Information about all coldspots of length ≥ 5,000 bp in BACT1. Coldspots
are listed from left to right in the MAG. For the purposes of this table we define coldspots
as regions of BACT1 containing no p-mutations at p = 0.5%, and we only attempt to call
p-mutations at sufficiently-covered positions (where the coverage is at least 5

0.005
= 1,000x,

as discussed in Appendix B.11). As in Table B.1, the “Coverage” column describes the
rounded average coverage of each region: most coldspots have coverages consistent with
the BACT1 average of 1,415x, although the third coldspot (containing the large region
of insufficiently-covered positions in the middle of BACT1 shown in Figure B.16) has a
much lower coverage. We provide taxonomic classifications to provide a basic analysis
of why these parts of BACT1 are “cold”—due, for example, to having evolutionarily
conserved functions or arising from prophage insertions. The “Kaiju” column describes the
taxonomic assignments from Kaiju [124] of each region, computed as described in Table
B.1. Since Kaiju was only able to classify the entirety of BACT1 as Bacteria, the diversity
of taxonomic classifications shown for different regions of this MAG is not necessarily
surprising. This diversity could be due to a variety of factors: for example, this MAG
could correspond to a novel species, or it could contain multiple strain-level genomes
collapsed into a single sequence. This latter situation is common for many MAGs, for many
metagenomic assemblers; this is in part a consequence of us running metaFlye without
the --keep-haplotypes flag, as well (Appendix B.2). Since some of these coldspots are
relatively short (Kaiju relies on protein-level matches), we also used BLASTN 2.12.0+
[218] on the NCBI nucleotide collection database [130] with default parameters to attempt
to assign matches to these regions. The “BLASTN” column describes the scientific name of
the sequence listed first in the BLASTN results for each coldspot region, sorting sequence
matches by ascending E-values; BLASTN did not identify any matches for the leftmost
coldspot.

178

Left Right Length (bp) Coverage Kaiju BLASTN

740,701 750,399 9,699 1,261x
Clostridium sp.

CAG:1013
“No significant

similarity found”

974,177 979,570 5,394 1,226x
Bacteroides
fragilis

Emticicia
oligotrophica DSM

17448

1,183,798 1,229,941 46,144 432x
Tannerella sp.

CAG:118
Podoviridae sp.

1,229,943 1,239,536 9,594 1,384x
Prevotella
disiens

Podoviridae sp.

1,618,448 1,637,614 19,167 1,454x
Bacteroides
uniformis

Phocaeicola
salanitronis DSM

18170

1,798,600 1,813,374 14,775 1,374x
Alistipes sp.
CHKCI003

Uncultured organism
clone VC1D523TF

2,140,896 2,147,770 6,875 1,345x Bacteroidales
Ruminococcus sp.

JE7A12

179

simplicity of the null hypothesis used. For one, we do not correct for multiple testing (so

blindly classifying all longest-gap p-values less than 0.05, for example, as “significant” may

be problematic when considering datasets with many contigs). Additionally, the equation

for computing the p-value of a gap is given only for a sequence of Bernoulli trials; in the

rare case where the longest coldspot gap in a contig is the “loop-around” gap from the

rightmost mutation to the leftmost mutation, we implicitly ignore that this break in the

contig exists, and act as if this gap were instead in the middle of the contig. This may

technically violate the assumptions made by the equation, but we do not imagine it should

complicate the interpretation of these p-values.

B.16 Growth dynamics

Here we demonstrate simple analyses of the three selected MAGs’ growth dynamics

by comparing their coverages (Appendix B.3) and GC skews. We emphasize that strainFlye

performs these analyses without reliance on reference databases.

A global maximum in a coverage plot usually indicates the origin of replication for

a bacterial genome that is undergoing replication, and the ratio of this global maximum’s

coverage to a global minimum’s coverage (the peak-to-trough ratio, or PTR) can measure

in vitro bacterial growth rates [99]. Similarly, the global minimum of GC skew of a

bacterial genome can also be indicative of its origin of replication [108, 63]. Figure B.17

shows plots of coverage and GC skew for the three selected MAGs, demonstrating a clear

anticorrelation between coverage and skew. To simplify these plots, we bin each MAG’s

coverage and skew; the strainFlye dynam covskew command can compute these binned

quantities.

We can compute the PTR [99] for each MAG by computing the ratio of normalized

coverage at the bin with the global minimum of the skew to the ratio of normalized

coverage at the bin with the global maximum of the skew; both extrema are highlighted

180

in Figure B.17. CAMP’s PTR is 1.18
0.93
≈ 1.27; BACT1’s PTR is 1.01

0.93
≈ 1.08; and BACT2’s

PTR is 1.28
0.91
≈ 1.40. All of these values are consistent with the distributions of PTRs

shown in Figure 1(B) of [99], and they indicate that—if the organisms represented by these

MAGs are indeed undergoing replication—the replication rate is higher for BACT2 and

CAMP than for BACT1. Although further work would be needed to validate these claims,

our ability to make these observations shows that HiFi-based metagenomics enables the

evaluation of the growth dynamics of a metagenome.

We close by noting that, beyond serving as an example of the utility of complete

metagenomics, information about PTRs can be useful in a variety of contexts when

studying human-associated microbiota [85]. Prior work has also linked mutation rates

and replication timing within a single yeast chromosome [103]; so, information about

putative replication origins has potential to inform a “prior” about how likely mutations in

certain regions of a MAG are, extending on the approaches for identifying rare mutations

described in this paper.

B.17 The link graph structure for haplotype visual-

ization

Here we define link graphs for representing mutations within a MAG that likely

co-occur on the same strain. Nodes in the link graph represent alleles of mutated positions,

and edges connect alleles that are observed together in the reads. The link graph resembles

the two graph structures (the “simple graph” and “probabilistically weighted graph”)

for metagenomic haplotyping proposed in [138]. The link graph differs from the graphs

proposed in that paper in that non-adjacent pairs of mutations can be connected; the edge

weighting methods are also somewhat simpler than those defined for the probabilistically

weighted graph [138]. That said, we expect that for many cases these graphs should be

fairly similar. We provide the strainFlye link module for the construction of these

181

Figure B.17. Coverage and GC skew throughout the three selected MAGs. We bin and
normalize coverages in order to simplify comparisons (both between coverage and skew
for the same MAG, and between coverages of different MAGs). Starting at the left end
of each MAG, each 10 kbp of positions are combined into a single bin. (The rightmost
bin for each MAG can contain less than 10 kbp positions.) We compute the median
coverage of each bin and then compute the entire MAG’s median coverage (M) by taking
the median of all bins’ median coverages. We then divide each bin’s median coverage by
M in order to normalize each bin’s coverage. These normalized coverages are clamped to
the range [0.7, 1.3] to limit the visual impact of outliers that likely represent sequencing
artifacts: these boundaries, in addition to y = 1, are represented as horizontal dotted lines
on each plot. We compute GC skew for the same bins of 10 kbp used for coverage. The
GC skew of a bin containing G instances of G and C instances of C is defined as G−C

G+C
,

plus—for all bins after the leftmost—the GC skew of the bin immediately to the left of
the current bin [63]. The midpoints of the bins with the global minimum and maximum
GC skew in each MAG are highlighted with vertical lines, a choice inspired by Figure
1 of [99]. We also highlight the midpoint of gene 1217, the highest-mutation-rate gene
in CAMP, as another vertical line in the CAMP plot. This enables us to follow up on
our observation in Figure B.14 in Appendix B.12 that this gene’s coverage is increasing.
Here we can confirm that this gene is located in a region of the MAG where, in general,
coverage is increasing and GC skew is decreasing; this may be indicative that this region
of the CAMP is being actively replicated. Although all three MAGs’ skew plots have clear
global maxima, only BACT2’s skew plot has an “obvious” global minimum. The fact that
CAMP is not completely assembled, as discussed in Appendix B.2, may be a causal factor
for its lack of a clear global minimum skew.

182

1 200,000 400,000 600,000 800,000 1,000,000 1,200,000

0.7

0.8

0.9

1.0

1.1

1.2

1.3

CAMP

1 300,000 600,000 900,000 1,200,000 1,500,000 1,800,000 2,100,000

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Co
ve

ra
ge

BACT1

1 400,000 800,000 1,200,000 1,600,000 2,000,000 2,400,000 2,800,000

Sequence position

0.7

0.8

0.9

1.0

1.1

1.2

1.3

BACT2

0

2

4

6

8

0

1

2

3

4

5

GC skew

-2

-1

0

1

2

CAMP Gene 1217

Coverage and GC skewCoverage
GC skew
Minimum GC skew
Maximum GC skew

183

graphs.

Defining a link graph.

We define one link graph per MAG. For each position i at which a mutation was

called, we define reads(i, N) as the number of reads with nucleotide N ∈ {A,C,G, T} at

position i. We add up to four nodes for each mutated position: each node (i, N) represents

the occurrence of a specific nucleotide at position i, and is only added if reads(i, N) > 1.

We then consider all pairs of nodes (i, Ni) and (j,Nj), where i ̸= j. We define a read

as an (i, j, Ni, Nj)-read if its aligned nucleotide at position i is Ni and its aligned nucleotide

at position j is Nj. We define reads(i, j, Ni, Nj) as the number of (i, j, Ni, Nj)-reads. We

can now define the link weight between two alleles:

link(i, j, Ni, Nj) =
reads(i, j, Ni, Nj)

max(reads(i, Ni), reads(j,Nj))

We also define

spanCount(i, j) =
∑

Ni∈{A,C,G,T}

(∑
Nj∈{A,C,G,T}

(
reads(i, j, Ni, Nj)

))
,

which is the total number of reads spanning two positions i and j (summing across

all combinations of alleles).

Finally, we connect two nodes (i, Ni) and (j,Nj) by an undirected edge of weight

link(i, j, Ni, Nj) if (i) spanCount(i, j) ≥ minSpan, and (ii) link(i, j, Ni, Nj) > 0. In the

context of the high-coverage MAGs in SheepGut, we set the minSpan parameter to 501;

lower values of this parameter will be required for lower-coverage MAGs, or for lower-

coverage sequencing projects. Visualizations of the distributions of reads(i, j, Ni, Nj) and

link(i, j, Ni, Nj) across the link graphs of the three selected MAGs in SheepGut are shown

in Figure B.18.

184

Figure B.18. Histograms showing various phasing statistics for each pair of consecutive
mutated positions (i, j) in the three selected MAGs. Mutated positions were identified by
NaiveFreq at p = 0.5%, and filtered to just positions with a coverage of at least 1,000x.
Two mutated positions i and j are considered as a pair of consecutive mutated positions if
no other mutated positions (using the same criteria of p = 0.5% and minimum coverage
≥ 1,000x) occur in between i and j. (For BACT1 and BACT2, which are represented as
connected components of a single circular sequence in the assembly graph, we consider
the rightmost mutation r and the leftmost mutation ℓ as a pair of consecutive mutated
positions, since reads can “loop around” these two MAGs’ sequences in the alignment.)
The top row shows a histogram of the distance between i and j. The middle row shows
reads(i, j, Ni, Nj): for each pair (i, j), only the most frequent pair of nucleotide positions
(Ni, Nj) is included here. The bottom row shows link(i, j, Ni, Nj), selecting only the
most frequent shared haplotype in the same way as the second row. We note that, if a
pair of consecutive mutated positions (i, j) are not spanned by at least one read, then
reads(i, j, Ni, Nj) = link(i, j, Ni, Nj) = 0 for this pair. (This is the case for all pairs with
distances above 25,000 bp shown in the first row of plots.)

185

Visualizing link graphs.

Connected components of the link graph represent groups of mutations that tend

to co-occur. Here we visualize components of two link graphs from the SheepGut dataset,

produced using the set of mutated positions identified by NaiveFreq at p = 0.5% with

coverage of at least minCov = 1,000x.

As expected, the largest few connected components (sorted by number of nodes

per component) in the link graph of BACT1, which contains many rare mutations, are

much larger than the largest components of CAMP and BACT2. Figure B.19 shows the

largest connected component of the link graphs for BACT1 and CAMP. Nodes are colored

according to the gene(s) in which the node’s position is contained. This indicates that the

BACT1 component spans a large region of BACT1 and that the CAMP component spans

a comparatively small region of CAMP. This is a consequence of highly-mutated MAGs

being easier to phase than sparsely mutated ones [138].

Link graphs can be helpful for visualizing what portions of a MAG are possible to

phase, but their general usefulness is limited. strainFlye thus also supports the ability to

generate smoothed haplotypes directly, as discussed in section 3.3.10, “Phasing identified

mutations”. These analyses and visualizations demonstrate the ability of HiFi reads to

span long regions of highly-mutated MAGs, and thus indicate putative haplotypes.

B.18 Haplotypes of the most mutated gene in

CAMP

During the development of strainFlye’s smooth module, we tested our pipeline

against a simple example—the region surrounding the highest-mutation-rate gene in

CAMP (Figure 3.5 (top))—in order to provide a simple benchmark for our ability to

recover strain-level haplotypes from a MAG. We found that using the jumboDBG module

of LJA [8] by itself, or using the jumboDBG and multiplexDBG modules of LJA without

186

Figure B.19. Largest components in the link graphs of BACT1 (top) and CAMP
(bottom). Nodes (alleles) are colored by the gene(s) in which their corresponding position
is located. Nodes present in a single gene are colored using the viridis gradient [179]:
darker (lighter) colors correspond to genes closer to the start (end) of the MAG. Positions
present in multiple genes are colored gray, and positions located in intergenic regions are
colored white. Nodes in the BACT1 (CAMP) component span a large (small) region of
BACT1 (CAMP). The smaller CAMP component includes additional labels for each node:
(i) position in the MAG, (ii) nucleotide at this position, (iii) the frequency with which this
nucleotide was observed at this position (reads(i, N)), and (iv) the relative frequency of this
nucleotide at this position. Many of the mutated positions in this component are located
within the gene shown in Figure 3.5 (top). Edges’ thicknesses in the CAMP component’s
visualization are scaled by their link values, so that thicker edges roughly correspond to
higher link values. Interestingly, this component contains two large “clique”-like structures
including many nodes that have high-link edges between each other. These two structures
correspond to the two different haplotypes of CAMP within this gene shown in Figure
3.5 (top), with one haplotype at roughly 16% relative frequency and another haplotype at
roughly 84% relative frequency. We visualized these graphs using Graphviz [54], using the
sfdp [76] layout method.

187

188

any error correction step, resulted in assembly graphs more complex than we expected.

We wanted to investigate methods for simplifying this graph while limiting the removal of

real strain-level variation; here we document these tests.

Analysis of haplotypes of this gene.

We limit our focus only to reads that surround the highest-mutation-rate gene (gene

1217) in CAMP. To do this, we define a region of positions in CAMP that includes the

entirety of gene 1217, as well as 25 kbp before and after this gene. We will only consider

smoothed reads whose corresponding linear alignments to CAMP overlap with this region

(we do not generate any virtual reads for this particular analysis).

We define M as the set of all 34 mutated positions (given p = 10%, based on Figure

3.5 (top)) located in gene 1217 in CAMP. There are 4,054 smoothed reads originating from

linear alignments that span all positions in M without deletions or skips. We extracted

the haplotypes from these smoothed reads at all positions in M . For the purposes of this

Appendix, we now define a haplotype of a smoothed read as a string of 34 characters, such

that the n-th character of this haplotype corresponds to this smoothed read’s nucleotide

at the n-th mutated position in gene 1217.

Figure B.20(a) shows a sequence logo that confirms that these mutated positions

are consistently dominated by a “reference” (∼84% frequency, at 3,430x coverage) and

“alternate” (∼16% frequency, at 600x coverage) haplotype. These two haplotypes are herein

referred to as the “primary” haplotypes of this gene.

There are, however, 14 unique haplotypes present in the smoothed reads which

differ from the primary haplotypes. The first question we had about these “non-primary”

haplotypes was how similar they were to the two primary haplotypes. We computed the

Hamming distance [68] between all unique haplotypes and the “reference” haplotype; a

histogram of these Hamming distances is shown in Figure B.20(b). This histogram clarifies

that all non-primary haplotypes closely resemble the reference or alternate haplotypes.

189

Figure B.20. Haplotypes of the 34 mutated positions (p = 10%) located within gene 1217
of CAMP. (a) Sequence logo of these mutated positions’ aligned nucleotides’ frequencies.
Since we created this plot based on the haplotypes represented in the smoothed reads, it
thus only includes the two most common aligned nucleotides at each of these mutations
(as discussed in section 3.5, “Methods”). However, this caveat should not make a large
difference. This logo was visualized using Logomaker [187]. (b) Histogram of Hamming
distances for all of the 16 unique haplotypes spanning gene 1217 in CAMP, relative to the
reference haplotype. Since these haplotypes are 34-character strings, the Hamming distance
of a given haplotype is constrained to within the range [0, 34]. This histogram includes the
reference and alternate haplotypes for illustrative purposes: the reference haplotype (which
has a Hamming distance of 0 to itself) is located in the leftmost bin and colored blue, while
the alternate haplotype (which has the maximum possible Hamming distance of 34, since it
disagrees with the reference haplotype at every mutated position) is located in the rightmost
bin and colored green. This plot shows that most haplotypes’ Hamming distances are
similar to that of either the reference or alternate haplotype, implying that most of these
haplotypes represent small deviations from these two “primary” haplotypes. (c) Histogram
of haplotype coverages for all unique non-primary haplotypes. The two primary haplotypes
are omitted from this histogram due to their relatively large coverages (3,430x and 600x); the
non-primary haplotypes all have coverages of less than 10x, indicating that these haplotypes
may correspond to sequencing errors or extremely rare mutations. For reference, the
highest-coverage (6x) non-primary haplotype, GAGTTAAGACATTAAACGCTTCCGGTCGGTACGG,
has a Hamming distance to the reference haplotype of 33, meaning that this haplotype
disagrees with the alternate haplotype at only one mutated position (the second, at
which it has an A instead of a C). (d) Chart of positional variation for the non-primary
haplotypes. The x-axis corresponds to the 34 mutated positions in gene 1217. For each of
the non-primary haplotypes, we compute two Hamming distances: DR is the Hamming
distance to the reference haplotype, and DA is the Hamming distance to the alternate
haplotype. If DR > DA, we add “+1” for all differing positions relative to the alternate
haplotype; if DR < DA, we add “+1” for all differing positions relative to the reference
haplotype. (DR ̸= DA for all haplotypes, and—as indicated in panel (b)—all but two of
the non-primary haplotypes have DR > DA.) This plot indicates that the distribution of
differing positions is roughly uniform across the non-primary haplotypes.

190

191

To get a sense of how common the non-primary haplotypes are compared to each

other (e.g. “does one of these haplotypes occur frequently?”), we plot a histogram of these

haplotypes’ coverages in Figure B.20(c). This histogram reassures us that all non-primary

haplotypes are extremely uncommon, considering that the total coverage of smoothed

reads spanning all mutated positions in gene 1217 in CAMP is 4,054x.

As we consider whether these non-primary haplotypes represent real or technical

variation, we next investigate whether these non-primary haplotypes consistently vary at

certain mutated positions. The 34 mutated positions from which we have constructed these

haplotypes are all already “hotspots,” but it may turn out that some of these positions

may vary in the same way for many unique haplotypes—this could indicate that these

haplotypes are evolutionarily related to each other. (A more formal way of conducting

this analysis might involve constructing a phylogenetic tree.) As a simple way to check

this, we plot the number of times each of the 34 mutated positions varies from either the

reference or alternate haplotypes in Figure B.20(d).

Figure B.20(d) provides evidence against the idea that these non-primary haplotypes

consistently vary from the reference or alternate haplotypes at the same mutated positions,

since—rather than being biased toward changes at a certain mutated position—the

distribution of differences across each mutated position is roughly uniform (albeit with

many zeroes, since there are only 14 unique non-primary haplotypes and 34 possible

mutated positions).

Taken together, these results thus serve as (imperfect) justification for ignoring

these non-primary haplotypes of gene 1217: in general these haplotypes are low-coverage

(Figure B.20(c)), only differ subtly from the primary haplotypes (Figure B.20(b)), and do

not seem to differ from these primary haplotypes in consistent ways (Figure B.20(d)). For

a first-pass analysis, we thus propose removing low-coverage edges in the graph that likely

arise due to these haplotypes.

192

Assembly of haplotypes of this gene.

Based on our analysis of the haplotypes of gene 1217 in CAMP (Figure B.20),

we restructured our use of LJA to include a simple coverage filter applied after running

jumboDBG but before running multiplexDBG. This coverage filter removes edges from the

graph with k-mer coverages below a user-configurable threshold minKmerCov (default

value 10; we note that “k-mer coverage” is not exactly comparable to the conventional

definition of coverage).

Running LJA in this way on the smoothed reads intersecting gene 1217 in CAMP

(using minKmerCov = 10) results in a simple assembly graph containing two isolated

edges. We can determine the haplotype of gene 1217 represented by an edge by aligning

this edge’s sequence to CAMP using minimap2 [106] and then extracting the nucleotides

of this edge that have been matched to all mutated positions. For the sake of brevity, in

the remainder of this Appendix we refer to this process as haplotype extraction.

Using haplotype extraction, we confirmed that one of the edges produced by

LJA with minKmerCov = 10 represents the reference haplotype, while the other edge

represents the alternate haplotype. From our perspective, this is the “ideal” result for

this simple example, and this bodes well for the application of this approach to other,

more complex read-sets (although more thorough testing on different types of communities

would be ideal).

Benchmarking assembly of haplotypes of this gene.

For comparison’s sake, we also ran six other assembly methods in order to determine

which haplotypes of gene 1217 in CAMP were recovered by these methods. We ran metaFlye

(with default parameters), metaFlye (with the --keep-haplotypes flag), jumboDBG (with

k = 5,001), LJA (with no error correction), LJA (with its default “mowerDBG” error

correction), and LJA (with the simple k-mer coverage filter described above, but using

minKmerCov = 1 instead of 10).

193

Three of these methods (both metaFlye runs, and LJA with mowerDBG error

correction) produced assemblies containing only one edge. Using haplotype extraction, we

confirmed that each of these lone edges corresponded to the reference haplotype. These

assemblies are thus “over-corrected,” since they do not include the alternate haplotype

(which clearly corresponds to a real alternate strain).

The other three of these methods (jumboDBG, LJA with no error correction,

and LJA with minKmerCov = 1) produced assemblies containing more than two edges.

jumboDBG’s assembly contained 32 edges, while the two LJA runs’ assemblies both

contained five edges. Although all three assemblers recovered the reference and alternate

haplotypes (as determined by haplotype extraction of the assembled edges), the fact that

they recovered other haplotypes is undesirable—since, as discussed earlier, these other

haplotypes likely represent noise. These assemblies are thus “under-corrected” for this

particular example, relative to the run of LJA with minKmerCov = 10.

B.19 Smoothed haplotype assembly graphs

Here we present additional visualizations of the assembly graphs produced by LJA

for MAGs’ smoothed and virtual reads, as described in section 3.3.10, “Phasing identified

mutations”. Figure B.21 shows MetagenomeScope [46] visualizations of the multiplex de

Bruijn graphs for BACT1 and BACT2, analogous to the visualization for CAMP shown in

Figure 3.6 in section 3.3.10, “Phasing identified mutations”.

194

Figure B.21. Multiplex de Bruijn graphs produced by LJA for the BACT1 (top) and
BACT2 (bottom) MAGs’ smoothed and virtual reads. The BACT1 graph is surprisingly
simple; this is likely a consequence of many potential smoothed reads being discarded,
as discussed in section 3.5, “Methods”. The BACT2 graph, however, resembles CAMP’s
(Figure 3.6) in that it primarily consists of a series of consecutive “bubble” patterns. We
produced these visualizations using MetagenomeScope [46].

195

Bibliography

[1] Louis Abraham. pydivsufsort. https://github.com/louisabraham/pydivsufsort,
2023.

[2] John Aitchison and Michael Greenacre. Biplots of compositional data. Journal of
the Royal Statistical Society Series C: Applied Statistics, 51(4):375–392, October
2002.

[3] Amnon Amir, Daniel McDonald, Jose A. Navas-Molina, Evguenia Kopylova, James T.
Morton, Zhenjiang Zech Xu, Eric P. Kightley, Luke R. Thompson, Embriette R. Hyde,
Antonio Gonzalez, and Rob Knight. Deblur Rapidly Resolves Single-Nucleotide
Community Sequence Patterns. mSystems, 2(2):e00191–16, April 2017.

[4] Noemi Andor, Trevor A. Graham, Marnix Jansen, Li C. Xia, C. Athena Aktipis,
Claudia Petritsch, Hanlee P. Ji, and Carlo C. Maley. Pan-cancer analysis of the extent
and consequences of intratumor heterogeneity. Nature Medicine, 22(1):105–113, 2016.

[5] Dmitry Antipov, Mikhail Rayko, Mikhail Kolmogorov, and Pavel A. Pevzner. vi-
ralFlye: assembling viruses and identifying their hosts from long-read metagenomics
data. Genome Biology, 23(1):1–21, 2022.

[6] Amy Apprill, Sean McNally, Rachel Parsons, and Laura Weber. Minor revision
to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11
bacterioplankton. Aquatic Microbial Ecology, 75(2):129–137, 2015.

[7] Evgeniy S. Balakirev and Francisco J. Ayala. Pseudogenes: are they “junk” or
functional DNA? Annual review of genetics, 37(1):123–151, 2003.

[8] Anton Bankevich, Andrey V. Bzikadze, Mikhail Kolmogorov, Dmitry Antipov, and
Pavel A. Pevzner. Multiplex de Bruijn graphs enable genome assembly from long,
high-fidelity reads. Nature Biotechnology, 40(7):1075–1081, 2022.

[9] Jeffrey E. Barrick, Dong Su Yu, Sung Ho Yoon, Haeyoung Jeong, Tae Kwang Oh,
Dominique Schneider, Richard E. Lenski, and Jihyun F. Kim. Genome evolution and
adaptation in a long-term experiment with Escherichia coli. Nature, 461(7268):1243–
1247, 2009.

[10] G. Bateman. On the power function of the longest run as a test for randomness in a
sequence of alternatives. Biometrika, 35(1/2):97–112, 1948.

196

https://github.com/louisabraham/pydivsufsort

[11] Richard A. Becker and William S. Cleveland. Brushing scatterplots. Technometrics,
29(2):127–142, 1987.

[12] Richard A. Becker, William S. Cleveland, and Allan R. Wilks. Dynamic graphics for
data analysis. Statistical Science, 2(4):355–383, 1987.

[13] Gaëtan Benoit, Sébastien Raguideau, Robert James, Adam M. Phillippy, Rayan
Chikhi, and Christopher Quince. High-quality metagenome assembly from long
accurate reads with metaMDBG. Nature Biotechnology, 42(9):1378–1383, 2024.

[14] Denis Bertrand, Jim Shaw, Manesh Kalathiyappan, Amanda Hui Qi Ng, M. Senthil
Kumar, Chenhao Li, Mirta Dvornicic, Janja Paliska Soldo, Jia Yu Koh, Chengx-
uan Tong, Oon Tek Ng, Timothy Barkham, Barnaby Young, Kalisvar Marimuthu,
Kern Rei Chng, Mile Sikic, and Niranjan Nagarajan. Hybrid metagenomic assembly
enables high-resolution analysis of resistance determinants and mobile elements in
human microbiomes. Nature Biotechnology, 37(8):937–944, 2019.

[15] Derek M. Bickhart, Mikhail Kolmogorov, Elizabeth Tseng, Daniel M. Portik, Anton
Korobeynikov, Ivan Tolstoganov, Gherman Uritskiy, Ivan Liachko, Shawn T. Sulli-
van, Sung Bong Shin, Alvah Zorea, Victòria Pascal Andreu, Kevin Panke-Buisse,
Marnix H. Medema, Itzhak Mizrahi, Pavel A. Pevzner, and Timothy P. L. Smith.
Generating lineage-resolved, complete metagenome-assembled genomes from complex
microbial communities. Nature Biotechnology, 40(5):711–719, 2022.

[16] Lee Bofkin and Nick Goldman. Variation in evolutionary processes at different codon
positions. Molecular Biology and Evolution, 24(2):513–521, 2007.

[17] Nicholas A. Bokulich, Benjamin D. Kaehler, Jai Ram Rideout, Matthew Dillon,
Evan Bolyen, Rob Knight, Gavin A. Huttley, and J. Gregory Caporaso. Optimizing
taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-
feature-classifier plugin. Microbiome, 6(1):90, 2018.

[18] Evan Bolyen, Jai Ram Rideout, Matthew R. Dillon, Nicholas A. Bokulich, Christian C.
Abnet, Gabriel A. Al-Ghalith, Harriet Alexander, Eric J. Alm, Manimozhiyan
Arumugam, Francesco Asnicar, Yang Bai, Jordan E. Bisanz, Kyle Bittinger, Asker
Brejnrod, Colin J. Brislawn, C. Titus Brown, Benjamin J. Callahan, Andrés Mauricio
Caraballo-Rodŕıguez, John Chase, Emily K. Cope, Ricardo Da Silva, Christian
Diener, Pieter C. Dorrestein, Gavin M. Douglas, Daniel M. Durall, Claire Duvallet,
Christian F. Edwardson, Madeleine Ernst, Mehrbod Estaki, Jennifer Fouquier,
Julia M. Gauglitz, Sean M. Gibbons, Deanna L. Gibson, Antonio Gonzalez, Kestrel
Gorlick, Jiarong Guo, Benjamin Hillmann, Susan Holmes, Hannes Holste, Curtis
Huttenhower, Gavin A. Huttley, Stefan Janssen, Alan K. Jarmusch, Lingjing Jiang,
Benjamin D. Kaehler, Kyo Bin Kang, Christopher R. Keefe, Paul Keim, Scott T.
Kelley, Dan Knights, Irina Koester, Tomasz Kosciolek, Jorden Kreps, Morgan G. I.
Langille, Joslynn Lee, Ruth Ley, Yong-Xin Liu, Erikka Loftfield, Catherine Lozupone,
Massoud Maher, Clarisse Marotz, Bryan D. Martin, Daniel McDonald, Lauren J.

197

McIver, Alexey V. Melnik, Jessica L. Metcalf, Sydney C. Morgan, Jamie T. Morton,
Ahmad Turan Naimey, Jose A. Navas-Molina, Louis Felix Nothias, Stephanie B.
Orchanian, Talima Pearson, Samuel L. Peoples, Daniel Petras, Mary Lai Preuss,
Elmar Pruesse, Lasse Buur Rasmussen, Adam Rivers, Michael S. Robeson, Patrick
Rosenthal, Nicola Segata, Michael Shaffer, Arron Shiffer, Rashmi Sinha, Se Jin Song,
John R. Spear, Austin D. Swafford, Luke R. Thompson, Pedro J. Torres, Pauline
Trinh, Anupriya Tripathi, Peter J. Turnbaugh, Sabah Ul-Hasan, Justin J. J. van der
Hooft, Fernando Vargas, Yoshiki Vázquez-Baeza, Emily Vogtmann, Max von Hippel,
William Walters, Yunhu Wan, Mingxun Wang, Jonathan Warren, Kyle C. Weber,
Charles H. D. Williamson, Amy D. Willis, Zhenjiang Zech Xu, Jesse R. Zaneveld,
Yilong Zhang, Qiyun Zhu, Rob Knight, and J. Gregory Caporaso. Reproducible,
interactive, scalable and extensible microbiome data science using QIIME 2. Nature
Biotechnology, 37(8):852–857, July 2019.

[19] Cynthia Brewer, Mark Harrower, Ben Sheesley, Andy Woodruff, and David Heyman.
ColorBrewer: Color advice for maps, 2021. https://colorbrewer2.org.

[20] Joshua N. Burton, Ivan Liachko, Maitreya J. Dunham, and Jay Shendure. Species-
level deconvolution of metagenome assemblies with Hi-C–based contact probability
maps. G3: Genes, Genomes, Genetics, 4(7):1339–1346, 2014.

[21] Andrey V. Bzikadze and Pavel A. Pevzner. UniAligner: a parameter-free framework
for fast sequence alignment. Nature Methods, pages 1–9, 2023.

[22] J. Gregory Caporaso, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic D.
Bushman, Elizabeth K. Costello, Noah Fierer, Antonio Gonzalez Peña, Julia K.
Goodrich, Jeffrey I. Gordon, Gavin A. Huttley, Scott T. Kelley, Dan Knights,
Jeremy E. Koenig, Ruth E. Ley, Catherine A. Lozupone, Daniel McDonald, Brian D.
Muegge, Meg Pirrung, Jens Reeder, Joel R. Sevinsky, Peter J. Turnbaugh, William A.
Walters, Jeremy Widmann, Tanya Yatsunenko, Jesse Zaneveld, and Rob Knight.
QIIME allows analysis of high-throughput community sequencing data. Nature
Methods, 7(5):335, 2010.

[23] Sherwood Casjens. The diverse and dynamic structure of bacterial genomes. Annual
review of genetics, 32(1):339–377, 1998.

[24] Thomas A. Caswell, Michael Droettboom, Antony Lee, John Hunter, Eric Firing,
David Stansby, Jody Klymak, Tim Hoffmann, Elliott Sales de Andrade, Nelle Varo-
quaux, Jens Hedegaard Nielsen, Benjamin Root, Phil Elson, Ryan May, Darren
Dale, Jae-Joon Lee, Jouni K. Seppänen, Damon McDougall, Andrew Straw, Paul
Hobson, Christoph Gohlke, Tony S. Yu, Eric Ma, Adrien F. Vincent, Steven Sil-
vester, Charlie Moad, Nikita Kniazev, Paul Ivanov, Elan Ernest, and Jan Katins.
matplotlib/matplotlib v3.1.3, February 2020.

[25] Mark J. Chaisson, Benjamin J. Raphael, and Pavel A. Pevzner. Microinver-
sions in mammalian evolution. Proceedings of the National Academy of Sciences,
103(52):19824–19829, 2006.

198

https://colorbrewer2.org

[26] Zhoutao Chen, Long Pham, Tsai-Chin Wu, Guoya Mo, Yu Xia, Peter L. Chang,
Devin Porter, Tan Phan, Huu Che, Hao Tran, Vikas Bansal, Justin Shaffer, Pedro
Belda-Ferre, Greg Humphrey, Rob Knight, Pavel Pevzner, Son Pham, Yong Wang,
and Ming Lei. Ultralow-input single-tube linked-read library method enables short-
read second-generation sequencing systems to routinely generate highly accurate and
economical long-range sequencing information. Genome Research, 30(6):898–909,
2020.

[27] Brian Cleary, Ilana Lauren Brito, Katherine Huang, Dirk Gevers, Terrance Shea,
Sarah Young, and Eric J. Alm. Detection of low-abundance bacterial strains
in metagenomic datasets by eigengenome partitioning. Nature Biotechnology,
33(10):1053–1060, 2015.

[28] Phillip Compeau and Pavel Pevzner. Bioinformatics Algorithms: An Active Learning
Approach. Active Learning Publishers La Jolla, California, 3 edition, 2018.

[29] Phillip Compeau and Pavel Pevzner. Bioinformatics Algorithms FAQ: Chapter 6.
https://www.bioinformaticsalgorithms.org/faq-chapter-6, 2018.

[30] Phillip E. C. Compeau, Pavel A. Pevzner, and Glenn Tesler. How to apply de Bruijn
graphs to genome assembly. Nature Biotechnology, 29(11):987–991, 2011.

[31] Joshimar Cordova and Gonzalo Navarro. Simple and efficient fully-functional succinct
trees. Theoretical Computer Science, 656:135–145, 2016.

[32] Athel Cornish-Bowden. Nomenclature for incompletely specified bases in nucleic
acid sequences: recommendations 1984. Nucleic Acids Research, 13(9):3021–3030,
1985.

[33] Wilfred R. Cuff, Venkata R. S. K. Duvvuri, Binhua Liang, Bhargavi Duvvuri,
Gillian E. Wu, Jianhong Wu, and Raymond S. W. Tsang. A novel interpretation of
structural dot plots of genomes derived from the analysis of two strains of Neisseria
meningitidis. Genomics, Proteomics and Bioinformatics, 8(3):159–169, 2010.

[34] Petr Danecek, James K. Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Mar-
tin O. Pollard, Andrew Whitwham, Thomas Keane, Shane A. McCarthy, Robert M.
Davies, and Heng Li. Twelve years of SAMtools and BCFtools. GigaScience,
10(2):giab008, 2021.

[35] Margaret O. Dayhoff, R. Schwartz, and B. Orcutt. In Margaret O. Dayhoff, editor,
Atlas of Protein Sequence and Structure, volume 5, chapter A Model of Evolutionary
Change in Proteins, pages 345–352. National Biomedical Research Foundation, 1978.

[36] George C. Dicenzo and Turlough M. Finan. The divided bacterial genome: structure,
function, and evolution. Microbiology and Molecular Biology Reviews, 81(3):e00019–
17, 2017.

199

https://www.bioinformaticsalgorithms.org/faq-chapter-6

[37] Nicolas Dierckxsens, Tong Li, Joris R. Vermeesch, and Zhi Xie. A benchmark of
structural variation detection by long reads through a realistic simulated model.
Genome Biology, 22(1):1–16, 2021.

[38] Lianming Du, Qin Liu, Zhenxin Fan, Jie Tang, Xiuyue Zhang, Megan Price, Bisong
Yue, and Kelei Zhao. Pyfastx: a robust python package for fast random access
to sequences from plain and gzipped FASTA/Q files. Briefings in Bioinformatics,
22(4):bbaa368, 2021.

[39] Stefan Elbe and Gemma Buckland-Merrett. Data, disease and diplomacy: GISAID’s
innovative contribution to global health. Global Challenges, 1(1):33–46, 2017.

[40] Joshua E. Elias and Steven P. Gygi. Target-decoy search strategy for increased
confidence in large-scale protein identifications by mass spectrometry. Nature Methods,
4(3):207–214, 2007.

[41] Joshua E. Elias, Wilhelm Haas, Brendan K. Faherty, and Steven P. Gygi. Com-
parative evaluation of mass spectrometry platforms used in large-scale proteomics
investigations. Nature Methods, 2(9):667–675, 2005.

[42] Kristen Emery, Syamand Hasam, William Stafford Noble, and Uri Keich. Multiple
competition-based FDR control and its application to peptide detection. In Inter-
national Conference on Research in Computational Molecular Biology, pages 54–71.
Springer, 2020.

[43] Jimmy K. Eng, Ashley L. McCormack, and John R. Yates. An approach to correlate
tandem mass spectral data of peptides with amino acid sequences in a protein
database. Journal of the American Society for Mass Spectrometry, 5(11):976–989,
1994.

[44] A. Murat Eren, Özcan C. Esen, Christopher Quince, Joseph H. Vineis, Hilary G.
Morrison, Mitchell L. Sogin, and Tom O. Delmont. Anvi’o: an advanced analysis
and visualization platform for ‘omics data. PeerJ, 3:e1319, 2015.

[45] H. Christina Fan, Yair J. Blumenfeld, Usha Chitkara, Louanne Hudgins, and
Stephen R. Quake. Noninvasive diagnosis of fetal aneuploidy by shotgun sequenc-
ing DNA from maternal blood. Proceedings of the National Academy of Sciences,
105(42):16266–16271, 2008.

[46] Marcus Fedarko, Jay Ghurye, Todd Treangen, and Mihai Pop. MetagenomeScope:
web-based hierarchical visualization of metagenome assembly graphs. In Proceedings
of the 25th International Symposium on Graph Drawing and Network Visualization,
volume 10692, pages 630–632. Springer, 2017.

[47] Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, MA,
2003.

200

[48] Xiaowen Feng, Haoyu Cheng, Daniel Portik, and Heng Li. Metagenome assembly of
high-fidelity long reads with hifiasm-meta. Nature Methods, 19(6):671–674, 2022.

[49] Andrew D. Fernandes, Jennifer N. S. Reid, Jean M. Macklaim, Thomas A. Mc-
Murrough, David R. Edgell, and Gregory B. Gloor. Unifying the analysis of high-
throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing
and selective growth experiments by compositional data analysis. Microbiome, 2(1):15,
2014.

[50] Johannes Fischer and Florian Kurpicz. Dismantling DivSufSort. arXiv, 2017.

[51] Christina Frank, Dirk Werber, Jakob P. Cramer, Mona Askar, Mirko Faber, Matthias
an der Heiden, Helen Bernard, Angelika Fruth, Rita Prager, Anke Spode, Maria
Wadl, Alexander Zoufaly, Sabine Jordan, Markus J. Kemper, Per Follin, Luise
Müller, Lisa A. King, Bettina Rosner, Udo Buchholz, Klaus Stark, and Krause,
Gérard for the HUS Investigation Team. Epidemic profile of Shiga-toxin–producing
Escherichia coli O104:H4 outbreak in Germany. New England Journal of Medicine,
365(19):1771–1780, 2011.

[52] Yoshinori Fukasawa, Luca Ermini, Hai Wang, Karen Carty, and Min-Sin Cheung.
LongQC: a quality control tool for third generation sequencing long read data. G3:
Genes, Genomes, Genetics, 10(4):1193–1196, 2020.

[53] Emden R. Gansner, Yehuda Koren, and Stephen North. Graph drawing by stress ma-
jorization. In International Symposium on Graph Drawing, pages 239–250. Springer,
2004.

[54] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software: Practice and Experience,
30(11):1203–1233, 2000.

[55] Rodrigo Garćıa-López, Jorge Francisco Vázquez-Castellanos, and Andrés Moya.
Fragmentation and coverage variation in viral metagenome assemblies, and their
effect in diversity calculations. Frontiers in Bioengineering and Biotechnology, 3:141,
2015.

[56] Ron Geller, Pilar Domingo-Calap, José M. Cuevas, Paola Rossolillo, Matteo Negroni,
and Rafael Sanjuán. The external domains of the HIV-1 envelope are a mutational
cold spot. Nature Communications, 6(1):1–9, 2015.

[57] Marco Gerlinger, Andrew J. Rowan, Stuart Horswell, James Larkin, David Endes-
felder, Eva Gronroos, Pierre Martinez, Nicholas Matthews, Aengus Stewart, Patrick
Tarpey, Ignacio Varela, Benjamin Phillimore, Sharmin Begum, Neil Q. McDonald,
Adam Butler, David Jones, Keiran Raine, Calli Latimer, Claudio R. Santos, Mahrokh
Nohadani, Aron C. Eklund, Bradley Spencer-Dene, Graham Clark, Lisa Pickering,
Gordon Stamp, Martin Gore, Zoltan Szallasi, Julian Downward, P. Andrew Futreal,

201

and Charles Swanton. Intratumor heterogeneity and branched evolution revealed by
multiregion sequencing. New England Journal of Medicine, 366:883–892, 2012.

[58] Jay Ghurye and Mihai Pop. Better identification of repeats in metagenomic scaffold-
ing. In Algorithms in Bioinformatics: 16th International Workshop, WABI 2016,
pages 174–184. Springer, 2016.

[59] Adrian J. Gibbs and George A. McIntyre. The diagram, a method for comparing
sequences: Its use with amino acid and nucleotide sequences. European Journal of
Biochemistry, 16(1):1–11, 1970.

[60] Gregory B. Gloor, Jean M. Macklaim, Vera Pawlowsky-Glahn, and Juan J. Egozcue.
Microbiome Datasets Are Compositional: And This Is Not Optional. Frontiers in
Microbiology, 8, 2017.

[61] Antonio Gonzalez, Jose A. Navas-Molina, Tomasz Kosciolek, Daniel McDonald,
Yoshiki Vázquez-Baeza, Gail Ackermann, Jeff DeReus, Stefan Janssen, Austin D.
Swafford, Stephanie B. Orchanian, Jon G. Sanders, Joshua Shorenstein, Hannes
Holste, Semar Petrus, Adam Robbins-Pianka, Colin J. Brislawn, Mingxun Wang,
Jai Ram Rideout, Evan Bolyen, Matthew Dillon, J. Gregory Caporaso, Pieter C.
Dorrestein, and Rob Knight. Qiita: rapid, web-enabled microbiome meta-analysis.
Nature Methods, 15(10):796, 2018.

[62] Brian E. Granger and Fernando Pérez. Jupyter: Thinking and storytelling with
code and data. Computing in Science & Engineering, 23(2):7–14, 2021.

[63] Andrei Grigoriev. Analyzing genomes with cumulative skew diagrams. Nucleic Acids
Research, 26(10):2286–2290, 1998.

[64] Nitin Gupta, Nuno Bandeira, Uri Keich, and Pavel A. Pevzner. Target-decoy
approach and false discovery rate: when things may go wrong. Journal of the
American Society for Mass Spectrometry, 22(7):1111–1120, 2011.

[65] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Gaël Varoquaux, Travis Vaught, and
Jarrod Millman, editors, Proceedings of the 7th Python in Science Conference, pages
11–15, Pasadena, CA USA, 2008.

[66] Niina Haiminen, Manfred Klaas, Zeyu Zhou, Filippo Utro, Paul Cormican, Thomas
Didion, Christian Sig Jensen, Christopher E. Mason, Susanne Barth, and Laxmi
Parida. Comparative exomics of Phalaris cultivars under salt stress. BMC Genomics,
15(6):1–12, 2014.

[67] Niina Haiminen, Filippo Utro, Ed Seabolt, and Laxmi Parida. Functional profiling
of COVID-19 respiratory tract microbiomes. Scientific Reports, in press.

[68] Richard W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147–160, 1950.

202

[69] André Hardy. An examination of procedures for determining the number of clusters
in a data set. In New approaches in classification and data analysis, pages 178–185.
Springer, 1994.

[70] Charles R. Harris, K. Jarrod Millman, Stéfan J. Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Rı́o, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, 2020.

[71] Tetsuya Hayashi, Kozo Makino, Makoto Ohnishi, Ken Kurokawa, Kazuo Ishii, Kat-
sushi Yokoyama, Chang-Gyun Han, Eiichi Ohtsubo, Keisuke Nakayama, Takahiro
Murata, Masashi Tanaka, Toru Tobe, Tetsuya Iida, Hideto Takami, Takeshi Honda,
Chihiro Sasakawa, Naotake Ogasawara, Teruo Yasunaga, Satoru Kuhara, Tadayoshi
Shiba, Masahira Hattori, and Hideo Shinagawa. Complete genome sequence of en-
terohemorrhagic Eschelichia coli O157:H7 and genomic comparison with a laboratory
strain K-12. DNA Research, 8(1):11–22, 2001.

[72] Steven Henikoff and Jorja G. Henikoff. Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992.

[73] Matthew R. Henn, Christian L. Boutwell, Patrick Charlebois, Niall J. Lennon,
Karen A. Power, Alexander R. Macalalad, Aaron M. Berlin, Christine M. Malboeuf,
Elizabeth M. Ryan, Sante Gnerre, Michael C. Zody, Rachel L. Erlich, Lisa M. Green,
Andrew Berical, Yaoyu Wang, Monica Casali, Hendrik Streeck, Allyson K. Bloom,
Tim Dudek, Damien Tully, Ruchi Newman, Karen L. Axten, Adrianne D. Gladden,
Laura Battis, Michael Kemper, Qiandong Zeng, Terrance P. Shea, Sharvari Gujja,
Carmen Zedlack, Olivier Gasser, Christian Brander, Christoph Hess, Huldrych F.
Günthard, Zabrina L. Brumme, Chanson J. Brumme, Suzane Bazner, Jenna Rychert,
Jake P. Tinsley, Ken H. Mayer, Eric Rosenberg, Florencia Pereyra, Joshua Z. Levin,
Sarah K. Young, Heiko Jessen, Marcus Altfeld, Bruce W. Birren, Bruce D. Walker,
and Todd M. Allen. Whole genome deep sequencing of HIV-1 reveals the impact
of early minor variants upon immune recognition during acute infection. PLoS
Pathogens, 8(3):e1002529, 2012.

[74] John R. Hollenbeck and Patrick M. Wright. Harking, Sharking, and Tharking:
Making the case for post hoc analysis of scientific data. Journal of Management,
43(1):5–18, 2017.

[75] Ting Hon, Kristin Mars, Greg Young, Yu-Chih Tsai, Joseph W. Karalius, Jane M.
Landolin, Nicholas Maurer, David Kudrna, Michael A. Hardigan, Cynthia C. Steiner,
Steven J. Knapp, Doreen Ware, Beth Shapiro, Paul Peluso, and David R. Rank.
Highly accurate long-read HiFi sequencing data for five complex genomes. Scientific
Data, 7(1):399, 2020.

203

[76] Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathematica journal,
10(1):37–71, 2005.

[77] Jaime Huerta-Cepas, François Serra, and Peer Bork. ETE 3: reconstruction, analysis,
and visualization of phylogenomic data. Molecular Biology and Evolution, 33(6):1635–
1638, 2016.

[78] John D. Hunter. Matplotlib: a 2D graphics environment. Computing in Science &
Engineering, 9(3):90, 2007.

[79] Laurence D. Hurst. The Ka/Ks ratio: diagnosing the form of sequence evolution.
Trends in Genetics: TIG, 18(9):486–486, 2002.

[80] Doug Hyatt, Gwo-Liang Chen, Philip F. LoCascio, Miriam L. Land, Frank W.
Larimer, and Loren J. Hauser. Prodigal: prokaryotic gene recognition and translation
initiation site identification. BMC Bioinformatics, 11(1):1–11, 2010.

[81] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De novo
assembly and genotyping of variants using colored de Bruijn graphs. Nature Genetics,
44(2):226–232, 2012.

[82] Anne C. Jäger, Michelle L. Alvarez, Carey P. Davis, Ernesto Guzmán, Yonmee
Han, Lisa Way, Paulina Walichiewicz, David Silva, Nguyen Pham, Glorianna Caves,
Jocelyne Bruand, Felix Schlesinger, Stephanie J. K. Pond, Joe Varlaro, Kathryn M.
Stephens, and Cydne L. Holt. Developmental validation of the MiSeq FGx forensic
genomics system for targeted next generation sequencing in forensic DNA casework
and database laboratories. Forensic Science International: Genetics, 28:52–70, 2017.

[83] Siddhartha Jaiswal, Pierre Fontanillas, Jason Flannick, Alisa Manning, Peter V.
Grauman, Brenton G. Mar, R. Coleman Lindsley, Craig H. Mermel, Noel Burtt,
Alejandro Chavez, John M. Higgins, Vladislav Moltchanov, Frank C. Kuo, Michael J.
Kluk, Brian Henderson, Leena Kinnunen M.Sc., Heikki A. Koistinen, Claes Ladenvall,
Gad Getz, Adolfo Correa, Benjamin F. Banahan, Stacey Gabriel, Sekar Kathiresan,
Heather M. Stringham, Mark I. McCarthy, Michael Boehnke, Jaakko Tuomilehto,
Christopher Haiman, Leif Groop, Gil Atzmon, James G. Wilson, Donna Neuberg,
David Altshuler, and Benjamin L. Ebert. Age-related clonal hematopoiesis associated
with adverse outcomes. New England Journal of Medicine, 371(26):2488–2498, 2014.

[84] Stefan Janssen, Daniel McDonald, Antonio Gonzalez, Jose A. Navas-Molina, Lingjing
Jiang, Zhenjiang Zech Xu, Kevin Winker, Deborah M. Kado, Eric Orwoll, Mark
Manary, Siavash Mirarab, and Rob Knight. Phylogenetic placement of exact amplicon
sequences improves associations with clinical information. mSystems, 3(3):10–1128,
2018.

[85] Tyler A. Joseph, Philippe Chlenski, Aviya Litman, Tal Korem, and Itsik Pe’er.
Accurate and robust inference of microbial growth dynamics from metagenomic

204

sequencing reveals personalized growth rates. Genome Research, 32(3):558–568,
2022.

[86] Lukas Käll, John D. Storey, Michael J MacCoss, and William Stafford Noble.
Assigning significance to peptides identified by tandem mass spectrometry using
decoy databases. Journal of Proteome Research, 7(01):29–34, 2008.

[87] Minoru Kanehisa. Enzyme annotation and metabolic reconstruction using KEGG.
Protein Function Prediction: Methods and Protocols, pages 135–145, 2017.

[88] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-
time longest-common-prefix computation in suffix arrays and its applications. In
Amihood Amir and Gad M. Landau, editors, Combinatorial Pattern Matching:
12th Annual Symposium, volume 2089 of Lecture Notes in Computer Science, pages
181–192. Springer, 2001.

[89] Kazutaka Katoh and Daron M. Standley. MAFFT multiple sequence alignment
software version 7: improvements in performance and usability. Molecular biology
and evolution, 30(4):772–780, 2013.

[90] Uri Keich, Attila Kertesz-Farkas, and William Stafford Noble. Improved false
discovery rate estimation procedure for shotgun proteomics. Journal of Proteome
Research, 14(8):3148–3161, 2015.

[91] Uri Keich, Kaipo Tamura, and William Stafford Noble. Averaging strategy to reduce
variability in target-decoy estimates of false discovery rate. Journal of Proteome
Research, 18(2):585–593, 2018.

[92] Bryce Kille, Yunxi Liu, Nicolae Sapoval, Michael Nute, Lawrence Rauchwerger,
Nancy Amato, and Todd J. Treangen. Accelerating SARS-CoV-2 low frequency
variant calling on ultra deep sequencing datasets. In 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 204–208. IEEE,
2021.

[93] Chan Yeong Kim, Junyeong Ma, and Insuk Lee. HiFi metagenomic sequencing
enables assembly of accurate and complete genomes from human gut microbiota.
bioRxiv, 2022.

[94] Motoo Kimura. A simple method for estimating evolutionary rates of base substi-
tutions through comparative studies of nucleotide sequences. Journal of Molecular
Evolution, 16(2):111–120, 1980.

[95] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E. Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing,
and Jupyter Development Team. Jupyter Notebooks—a publishing format for
reproducible computational workflows. In ELPUB, pages 87–90, 2016.

205

[96] Rob Knight, Peter Maxwell, Amanda Birmingham, Jason Carnes, J. Gregory Ca-
poraso, Brett C. Easton, Michael Eaton, Micah Hamady, Helen Lindsay, Zongzhi
Liu, Catherine Lozupone, Daniel McDonald, Michael Robeson, Raymond Sammut,
Sandra Smit, Matthew J. Wakefield, Jeremy Widmann, Shandy Wikamn, Stephanie
Wilson, Hua Ying, and Gavin A. Huttley. PyCogent: a toolkit for making sense
from sequence. Genome Biology, 8:1–16, 2007.

[97] Mikhail Kolmogorov, Derek M. Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail
Rayko, Sung Bong Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy
P. L. Smith, and Pavel A. Pevzner. metaFlye: scalable long-read metagenome
assembly using repeat graphs. Nature Methods, 17(11):1103–1110, 2020.

[98] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A. Pevzner. Assembly of long,
error-prone reads using repeat graphs. Nature Biotechnology, 37(5):540–546, 2019.

[99] Tal Korem, David Zeevi, Jotham Suez, Adina Weinberger, Tali Avnit-Sagi, Maya
Pompan-Lotan, Elad Matot, Ghil Jona, Alon Harmelin, Nadav Cohen, Alexandra
Sirota-Madi, Christoph A. Thaiss, Meirav Pevsner-Fischer, Rotem Sorek, Ramnik J.
Xavier, Eran Elinav, and Eran Segal. Growth dynamics of gut microbiota in health
and disease inferred from single metagenomic samples. Science, 349(6252):1101–1106,
2015.

[100] Sergey Koren, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H.
Bergman, and Adam M. Phillippy. Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome Research, 27(5):722–
736, 2017.

[101] Jan Krumsiek, Roland Arnold, and Thomas Rattei. Gepard: a rapid and sensitive
tool for creating dotplots on genome scale. Bioinformatics, 23(8):1026–1028, 2007.

[102] D. J. Lane. 16S/23S rRNA sequencing. In Erko Stackebrandt and Michael Goodfellow,
editors, Nucleic Acid Techniques in Bacterial Systematics, pages 115–175. John Wiley
and Sons, New York, 1991.

[103] Gregory I. Lang and Andrew W. Murray. Mutation rates across budding yeast
chromosome VI are correlated with replication timing. Genome Biology and Evolution,
3:799–811, 2011.

[104] Ivica Letunic and Peer Bork. Interactive Tree Of Life (iTOL) v4: recent updates
and new developments. Nucleic Acids Research, 47(W1):W256–W259, 2019.

[105] Semen A. Leyn, Jaime E. Zlamal, Oleg V. Kurnasov, Xiaoqing Li, Marinela Elane,
Lourdes Myjak, Mikolaj Godzik, Alban de Crecy, Fernando Garcia-Alcalde, Martin
Ebeling, and Andrei L. Osterman. Experimental evolution in morbidostat reveals
converging genomic trajectories on the path to triclosan resistance. Microbial
Genomics, 7(5):000553, 2021.

206

[106] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18):3094–3100, 2018.

[107] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, and Richard Durbin. The sequence alignment/map format
and samtools. Bioinformatics, 25(16):2078–2079, 2009.

[108] Jean R. Lobry. Asymmetric substitution patterns in the two DNA strands of bacteria.
Molecular biology and evolution, 13(5):660–665, 1996.

[109] Michael I. Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):550,
2014.

[110] Catherine Lozupone and Rob Knight. UniFrac: a new phylogenetic method for com-
paring microbial communities. Applied and Environmental Microbiology, 71(12):8228–
8235, 2005.

[111] Chengwei Luo, Rob Knight, Heli Siljander, Mikael Knip, Ramnik J. Xavier, and
Dirk Gevers. Constrains identifies microbial strains in metagenomic datasets. Nature
Biotechnology, 33(10):1045–1052, 2015.

[112] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

[113] Siddhartha Mandal, Will Van Treuren, Richard A. White, Merete Eggesbø, Rob
Knight, and Shyamal D. Peddada. Analysis of composition of microbiomes: a novel
method for studying microbial composition. Microbial Ecology in Health and Disease,
26(1):27663, 2015.

[114] Dipankar Manna, Adam M. Breier, and N Patrick Higgins. Microarray analysis of
transposition targets in Escherichia coli : the impact of transcription. Proceedings of
the National Academy of Sciences, 101(26):9780–9785, 2004.

[115] Giovanni Manzini. Two space saving tricks for linear time LCP array computation.
In Scandinavian Workshop on Algorithm Theory, pages 372–383. Springer, 2004.

[116] Jaswinder Singh Maras, Shvetank Sharma, Adil Bhat, Reshu Aggrawal, Ekta Gupta,
and Shiv K. Sarin. Multi-omics integration analysis of respiratory specimen character-
izes baseline molecular determinants associated with COVID-19 diagnosis. MedRxiv,
pages 2020–07, 2020.

[117] Clarisse Marotz, Rebecca Molinsky, Cameron Martino, Bruno Bohn, Sumith Roy,
Michael Rosenbaum, Möıse Desvarieux, Melana Yuzefpolskaya, Bruce J. Paster,
David R. Jacobs, Paolo C. Colombo, Panos N. Papapanou, Rob Knight, and Ryan T.
Demmer. Early microbial markers of periodontal and cardiometabolic diseases in
ORIGINS. npj Biofilms and Microbiomes, 8(1):30, 2022.

207

[118] Cameron Martino, James T. Morton, Clarisse A. Marotz, Luke R. Thompson,
Anupriya Tripathi, Rob Knight, and Karsten Zengler. A Novel Sparse Compositional
Technique Reveals Microbial Perturbations. mSystems, 4(1):e00016–19, 2019.

[119] Ann M. Mc Cartney, Kishwar Shafin, Michael Alonge, Andrey V. Bzikadze, Giulio
Formenti, Arkarachai Fungtammasan, Kerstin Howe, Chirag Jain, Sergey Koren,
Glennis A. Logsdon, Karen H. Miga, Alla Mikheenko, Benedict Paten, Alaina
Shumate, Daniela C. Soto, Ivan Sović, Jonathan M. D. Wood, Justin M. Zook,
Adam M. Phillippy, and Arang Rhie. Chasing perfection: validation and polishing
strategies for telomere-to-telomere genome assemblies. Nature Methods, pages 1–9,
2022.

[120] Daniel McDonald, Jose C. Clemente, Justin Kuczynski, Jai Ram Rideout, Jesse
Stombaugh, Doug Wendel, Andreas Wilke, Susan Huse, John Hufnagle, Folker Meyer,
Rob Knight, and J. Gregory Caporaso. The Biological Observation Matrix (BIOM)
format or: how I learned to stop worrying and love the ome-ome. GigaScience,
1(1):7, 2012.

[121] Daniel McDonald, Morgan N. Price, Julia Goodrich, Eric P. Nawrocki, Todd Z.
DeSantis, Alexander Probst, Gary L. Andersen, Rob Knight, and Philip Hugenholtz.
An improved greengenes taxonomy with explicit ranks for ecological and evolutionary
analyses of bacteria and archaea. The ISME journal, 6(3):610–618, 2012.

[122] Daniel McDonald, Yoshiki Vázquez-Baeza, David Koslicki, Jason McClelland, Nicolai
Reeve, Zhenjiang Xu, Antonio Gonzalez, and Rob Knight. Striped UniFrac: enabling
microbiome analysis at unprecedented scale. Nature Methods, 15(11):847–848, 2018.

[123] Michael R. McLaren, Amy D. Willis, and Benjamin J. Callahan. Consistent and
correctable bias in metagenomic sequencing experiments. eLife, 8:e46923, 2019.

[124] Peter Menzel, Kim Lee Ng, and Anders Krogh. Fast and sensitive taxonomic
classification for metagenomics with kaiju. Nature Communications, 7(1):1–9, 2016.

[125] Jason R. Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for
next-generation sequencing data. Genomics, 95(6):315–327, 2010.

[126] Jeremiah J. Minich, Semar Petrus, Julius D. Michael, Todd P. Michael, Rob Knight,
and Eric E. Allen. Temporal, environmental, and biological drivers of the mucosal
microbiome in a wild marine fish, Scomber japonicus. bioRxiv, page 721555, 2019.

[127] Jeremiah J. Minich, Qiyun Zhu, Stefan Janssen, Ryan Hendrickson, Amnon Amir,
Russ Vetter, John Hyde, Megan M. Doty, Kristina Stillwell, James Benardini,
Jae H. Kim, Eric E. Allen, Kasthuri Venkateswaran, and Rob Knight. KatharoSeq
enables high-throughput microbiome analysis from low-biomass samples. mSystems,
3(3):e00218–17, 2018.

208

[128] Siavash Mirarab, Nam Nguyen, and Tandy Warnow. SEPP: SATé-enabled phyloge-
netic placement. In Biocomputing 2012, pages 247–258. World Scientific, 2012.

[129] Roger E. Moore, Mary K. Young, and Terry D. Lee. Qscore: an algorithm for
evaluating SEQUEST database search results. Journal of the American Society for
Mass Spectrometry, 13(4):378–386, 2002.

[130] Aleksandr Morgulis, George Coulouris, Yan Raytselis, Thomas L. Madden, Richa
Agarwala, and Alejandro A. Schäffer. Database indexing for production megablast
searches. Bioinformatics, 24(16):1757–1764, 2008.

[131] Matthew Mort, Dobril Ivanov, David N. Cooper, and Nadia A. Chuzhanova. A meta-
analysis of nonsense mutations causing human genetic disease. Human mutation,
29(8):1037–1047, 2008.

[132] James T. Morton, Clarisse Marotz, Alex Washburne, Justin Silverman, Livia S.
Zaramela, Anna Edlund, Karsten Zengler, and Rob Knight. Establishing microbial
composition measurement standards with reference frames. Nature Communications,
10(1):2719, June 2019.

[133] James T. Morton, Jon Sanders, Robert A. Quinn, Daniel McDonald, Antonio
Gonzalez, Yoshiki Vázquez-Baeza, Jose A. Navas-Molina, Se Jin Song, Jessica L.
Metcalf, Embriette R. Hyde, Manuel Lladser, Pieter C. Dorrestein, and Rob Knight.
Balance trees reveal microbial niche differentiation. mSystems, 2(1):e00162–16, 2017.

[134] Eugene W. Myers. HISim, 2021. https://github.com/thegenemyers/HI.SIM.

[135] Kensuke Nakamura, Taku Oshima, Takuya Morimoto, Shun Ikeda, Hirofumi
Yoshikawa, Yuh Shiwa, Shu Ishikawa, Margaret C. Linak, Aki Hirai, Hiroki Takahashi,
Md. Altaf-Ul-Amin, Naotake Ogasawara, and Shigehiko Kanaya. Sequence-specific
error profile of Illumina sequencers. Nucleic Acids Research, 39(13):e90–e90, 2011.

[136] Marta Nascimento, Adriano Sousa, Mário Ramirez, Alexandre P. Francisco, João A.
Carriço, and Cátia Vaz. PHYLOViZ 2.0: providing scalable data integration and
visualization for multiple phylogenetic inference methods. Bioinformatics, 33(1):128–
129, 2017.

[137] Joseph I. Naus. Approximations for distributions of scan statistics. Journal of the
American Statistical Association, 77(377):177–183, 1982.

[138] Samuel M. Nicholls, Wayne Aubrey, Kurt De Grave, Leander Schietgat, Christo-
pher J. Creevey, and Amanda Clare. On the complexity of haplotyping a microbial
community. Bioinformatics, 37(10):1360–1366, 01 2021.

[139] Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V. Bzikadze,
Alla Mikheenko, Mitchell R. Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gershman,
Sergey Aganezov, Savannah J. Hoyt, Mark Diekhans, Glennis A. Logsdon, Michael

209

https://github.com/thegenemyers/HI.SIM

Alonge, Stylianos E. Antonarakis, Matthew Borchers, Gerard G. Bouffard, Shelise Y.
Brooks, Gina V. Caldas, Nae-Chyun Chen, Haoyu Cheng, Chen-Shan Chin, William
Chow, Leonardo G. de Lima, Philip C. Dishuck, Richard Durbin, Tatiana Dvorkina,
Ian T. Fiddes, Giulio Formenti, Robert S. Fulton, Arkarachai Fungtammasan, Erik
Garrison, Patrick G. S. Grady, Tina A. Graves-Lindsay, Ira M. Hall, Nancy F. Hansen,
Gabrielle A. Hartley, Marina Haukness, Kerstin Howe, Michael W. Hunkapiller,
Chirag Jain, Miten Jain, Erich D. Jarvis, Peter Kerpedjiev, Melanie Kirsche, Mikhail
Kolmogorov, Jonas Korlach, Milinn Kremitzki, Heng Li, Valerie V. Maduro, Tobias
Marschall, Ann M. McCartney, Jennifer McDaniel, Danny E. Miller, James C.
Mullikin, Eugene W. Myers, Nathan D. Olson, Benedict Paten, Paul Peluso, Pavel A.
Pevzner, David Porubsky, Tamara Potapova, Evgeny I. Rogaev, Jeffrey A. Rosenfeld,
Steven L. Salzberg, Valerie A. Schneider, Fritz J. Sedlazeck, Kishwar Shafin, Colin J.
Shew, Alaina Shumate, Ying Sims, Arian F. A. Smit, Daniela C. Soto, Ivan Sović,
Jessica M. Storer, Aaron Streets, Beth A. Sullivan, Françoise Thibaud-Nissen, James
Torrance, Justin Wagner, Brian P. Walenz, Aaron Wenger, Jonathan M. D. Wood,
Chunlin Xiao, Stephanie M. Yan, Alice C. Young, Samantha Zarate, Urvashi Surti,
Rajiv C. McCoy, Megan Y. Dennis, Ivan A. Alexandrov, Jennifer L. Gerton, Rachel J.
O’Neill, Winston Timp, Justin M. Zook, Michael C. Schatz, Evan E. Eichler, Karen H.
Miga, and Adam M. Phillippy. The complete sequence of a human genome. Science,
376(6588):44–53, 2022.

[140] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A. Pevzner. metaS-
PAdes: a new versatile metagenomic assembler. Genome Research, 27(5):824–834,
2017.

[141] Sergey Nurk, Brian P. Walenz, Arang Rhie, Mitchell R. Vollger, Glennis A. Logsdon,
Robert Grothe, Karen H. Miga, Evan E. Eichler, Adam M. Phillippy, and Sergey
Koren. Hicanu: accurate assembly of segmental duplications, satellites, and allelic
variants from high-fidelity long reads. Genome Research, 30(9):1291–1305, 2020.

[142] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. PBSIM2: a simulator for
long-read sequencers with a novel generative model of quality scores. Bioinformatics,
37(5):589–595, 2021.

[143] pandas development team. pandas-dev/pandas: Pandas 1.2.3, March 2021.

[144] Alma E. Parada, David M. Needham, and Jed A. Fuhrman. Every base matters: as-
sessing small subunit rRNA primers for marine microbiomes with mock communities,
time series and global field samples. Environmental Microbiology, 18(5):1403–1414,
2016.

[145] Donovan H. Parks, Michael Imelfort, Connor T. Skennerton, Philip Hugenholtz, and
Gene W. Tyson. CheckM: assessing the quality of microbial genomes recovered from
isolates, single cells, and metagenomes. Genome Research, 25(7):1043–1055, 2015.

[146] Fabian Pedregosa and Phillippe Gervais. memory_profiler. https://github.com/pyt
honprofilers/memory profiler, 2022.

210

https://github.com/pythonprofilers/memory_profiler
https://github.com/pythonprofilers/memory_profiler

[147] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

[148] Pavel Pevzner and Glenn Tesler. Genome rearrangements in mammalian evolution:
lessons from human and mouse genomes. Genome Research, 13(1):37–45, 2003.

[149] Pavel A. Pevzner, Haixu Tang, and Glenn Tesler. De novo repeat classification and
fragment assembly. Genome Research, 14:1786–1796, 2004.

[150] Meg Pirrung, Ryan Kennedy, J. Gregory Caporaso, Jesse Stombaugh, Doug Wen-
del, and Rob Knight. TopiaryExplorer: visualizing large phylogenetic trees with
environmental metadata. Bioinformatics, 27(21):3067–3069, 2011.

[151] Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas Colthurst,
Alexander Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T. Afshar, Sam S.
Gross, Lizzie Dorfman, Cory Y. McLean, and Mark A. DePristo. A universal SNP
and small-indel variant caller using deep neural networks. Nature Biotechnology,
36(10):983–987, 2018.

[152] Zoe A. Pratte, Marc Besson, Rebecca D. Hollman, and Frank J. Stewart. The Gills
of Reef Fish Support a Distinct Microbiome Influenced by Host-Specific Factors.
Applied and Environmental Microbiology, 84(9):e00063–18, February 2018.

[153] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. FastTree 2–approximately
maximum-likelihood trees for large alignments. PLoS One, 5(3):e9490, 2010.

[154] Christian Quast, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo
Yarza, Jörg Peplies, and Frank Oliver Glöckner. The SILVA ribosomal RNA gene
database project: improved data processing and web-based tools. Nucleic Acids
Research, 41(D1):D590–D596, 2012.

[155] Christopher Quince, Tom O. Delmont, Sébastien Raguideau, Johannes Alneberg,
Aaron E Darling, Gavin Collins, and A. Murat Eren. DESMAN: a new tool for de
novo extraction of strains from metagenomes. Genome Biology, 18(1):1–22, 2017.

[156] Aaron R. Quinlan and Ira M. Hall. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics, 26(6):841–842, 2010.

[157] Thomas Quinn and Ionas Erb. Amalgams: data-driven amalgamation for the
reference-free dimensionality reduction of zero-laden compositional data. bioRxiv,
2020.

[158] Andrew Rambaut. FigTree. http://tree.bio.ed.ac.uk/software/figtree/.

211

http://tree.bio.ed.ac.uk/software/figtree/

[159] Jeff Reback, Wes McKinney, jbrockmendel, Joris Van den Bossche, Tom Augspurger,
Phillip Cloud, gfyoung, Sinhrks, Simon Hawkins, Adam Klein, Matthew Roeschke,
Jeff Tratner, Chang She, Terji Petersen, William Ayd, MomIsBestFriend, Marc
Garcia, Jeremy Schendel, Andy Hayden, Vytautas Jancauskas, Daniel Saxton, Ali
McMaster, Pietro Battiston, Skipper Seabold, chris-b1, h-vetinari, Stephan Hoyer,
Kaiqi Dong, Wouter Overmeire, and Martin Winkel. pandas-dev/pandas: Pandas
1.1.2, September 2020.

[160] Daniel C. Richter, Felix Ott, Alexander F. Auch, Ramona Schmid, and Daniel H.
Huson. MetaSim—a sequencing simulator for genomics and metagenomics. PLoS
One, 3(10):e3373, 2008.

[161] Monica Riley, Takashi Abe, Martha B. Arnaud, Mary KB. Berlyn, Frederick R.
Blattner, Roy R. Chaudhuri, Jeremy D Glasner, Takashi Horiuchi, Ingrid M. Keseler,
Takehide Kosuge, Hirotada Mori, Nicole T. Perna, Guy Plunket III, Kenneth E
Rudd, Margrethe H. Serres, Gavin H. Thomas, Nicholas R. Thomson, David Wishart,
and Barry L. Wanner. Escherichia coli K-12: a cooperatively developed annotation
snapshot—2005. Nucleic Acids Research, 34(1):1–9, 2006.

[162] Javier Rivera-Pinto, Juan Jose Egozcue, Vera Pawlowsky-Glahn, Raul Paredes, Marc
Noguera-Julian, and M. Luz Calle. Balances: a new perspective for microbiome
analysis. mSystems, 3(4):10–1128, 2018.

[163] Peter Rugbjerg and Morten O. A. Sommer. Overcoming genetic heterogeneity in
industrial fermentations. Nature Biotechnology, 37(8):869–876, 2019.

[164] Jesse J. Salk, Michael W. Schmitt, and Lawrence A. Loeb. Enhancing the accuracy
of next-generation sequencing for detecting rare and subclonal mutations. Nature
Reviews Genetics, 19(5):269, 2018.

[165] Sarah Sandmann, Aniek O. De Graaf, Mohsen Karimi, Bert A. Van Der Reijden,
Eva Hellström-Lindberg, Joop H. Jansen, and Martin Dugas. Evaluating variant
calling tools for non-matched next-generation sequencing data. Scientific Reports,
7(1):1–12, 2017.

[166] Nicolae Sapoval, Amirali Aghazadeh, Michael G. Nute, Dinler A. Antunes, Advait
Balaji, Richard Baraniuk, C. J. Barberan, Ruth Dannenfelser, Chen Dun, Mo-
hammadamin Edrisi, R. A. Leo Elworth, Bryce Kille, Anastasios Kyrillidis, Luay
Nakhleh, Cameron R. Wolfe, Zhi Yan, Vicky Yao, and Todd J. Treangen. Current
progress and open challenges for applying deep learning across the biosciences. Nature
Communications, 13(1):1–12, 2022.

[167] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
Vega-Lite: a grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2016.

212

[168] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. Reactive Vega:
a streaming dataflow architecture for declarative interactive visualization. IEEE
Transactions on Visualization and Computer Graphics, 22(1):659–668, 2015.

[169] David J. Scanlan, Martin Ostrowski, Sophie Mazard, Alexis Dufresne, Laurence
Garczarek, Wolfgang R. Hess, Anton F. Post, Martin Hagemann, I. Paulsen, and
Frédéric Partensky. Ecological genomics of marine picocyanobacteria. Microbiol.
Mol. Biol. Rev., 73(2):249–299, 2009.

[170] Patrick D. Schloss. Identifying and overcoming threats to reproducibility, replicability,
robustness, and generalizability in microbiome research. mBio, 9(3):10–1128, 2018.

[171] Michael W. Schmitt, Scott R. Kennedy, Jesse J Salk, Edward J. Fox, Joseph B.
Hiatt, and Lawrence A. Loeb. Detection of ultra-rare mutations by next-generation
sequencing. Proceedings of the National Academy of Sciences, 109(36):14508–14513,
2012.

[172] Edward E. Seabolt, Gowri Nayar, Harsha Krishnareddy, Akshay Agarwal, Kristen L.
Beck, Ignacio Terrizzano, Eser Kandogan, Mark Kunitomi, Mary Roth, Vandana
Mukherjee, and James H. Kaufman. Functional genomics platform, a cloud-based
platform for studying microbial life at scale. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 19(2):940–952, 2020.

[173] Torsten Seemann. barrnap 0.9: rapid ribosomal RNA prediction, 2018. https:
//github.com/tseemann/barrnap.

[174] Kathrin M. Seibt, Thomas Schmidt, and Tony Heitkam. FlexiDot: highly cus-
tomizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics,
34(20):3575–3577, 2018.

[175] Agnieszka Sekowska, Sofie Wendel, Emil C. Fischer, Morten H. H. Nørholm, and
Antoine Danchin. Generation of mutation hotspots in ageing bacterial colonies.
Scientific Reports, 6(1):1–7, 2016.

[176] Mantas Sereika, Rasmus Hansen Kirkegaard, Søren Michael Karst, Thomas Yssing
Michaelsen, Emil Aarre Sørensen, Rasmus Dam Wollenberg, and Mads Albertsen.
Oxford nanopore r10.4 long-read sequencing enables the generation of near-finished
bacterial genomes from pure cultures and metagenomes without short-read or refer-
ence polishing. Nature Methods, 19(7):823–826, 2022.

[177] Zijie Shen, Yan Xiao, Lu Kang, Wentai Ma, Leisheng Shi, Li Zhang, Zhuo Zhou,
Jing Yang, Jiaxin Zhong, Donghong Yang, Li Guo, Guoliang Zhang, Hongru Li,
Yu Xu, Mingwei Chen, Zhancheng Gao, Jianwei Wang, Lili Ren, and Mingkun Li.
Genomic diversity of severe acute respiratory syndrome–coronavirus 2 in patients
with coronavirus disease 2019. Clinical Infectious Diseases, 71(15):713–720, 2020.

213

https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap

[178] Justin D. Silverman, Alex D. Washburne, Sayan Mukherjee, and Lawrence A. David.
A phylogenetic transform enhances analysis of compositional microbiota data. eLife,
6:e21887, 2017.

[179] Nathaniel Smith and Stéfan van der Walt. A better default colormap for matplotlib.
SciPy 2015, 2015. https://www.youtube.com/watch?v=xAoljeRJ3lU.

[180] T. M. Sonneborn. Degeneracy of the genetic code: extent, nature, and genetic
implications. In Evolving Genes and Proteins, pages 377–397. Elsevier, 1965.

[181] Martin Šošić and Mile Šikić. Edlib: a C/C++ library for fast, exact sequence
alignment using edit distance. Bioinformatics, 33(9):1394–1395, 2017.

[182] Sara Steegen, Francis Tuerlinckx, Andrew Gelman, and Wolf Vanpaemel. Increasing
transparency through a multiverse analysis. Perspectives on Psychological Science,
11(5):702–712, 2016.

[183] John R. Stevens, Todd R. Jones, Michael Lefevre, Balasubramanian Ganesan, and
Bart C. Weimer. SigTree: a microbial community analysis tool to identify and
visualize significantly responsive branches in a phylogenetic tree. Computational and
structural biotechnology journal, 15:372–378, 2017.

[184] Antonius Suwanto and Samuel Kaplan. Physical and genetic mapping of the
Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromo-
somes. Journal of Bacteriology, 171(11):5850–5859, 1989.

[185] Yoshihiko Suzuki and Gene Myers. Accurate k-mer Classification Using Read Profiles.
In Christina Boucher and Sven Rahmann, editors, 22nd International Workshop on
Algorithms in Bioinformatics (WABI 2022), volume 242 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1–10:20, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[186] Alexander P. Sweeten, Michael C. Schatz, and Adam M. Phillippy. ModDotPlot—
rapid and interactive visualization of tandem repeats. Bioinformatics, 40(8):btae493,
2024.

[187] Ammar Tareen and Justin B. Kinney. Logomaker: beautiful sequence logos in
Python. Bioinformatics, 36(7):2272–2274, 2020.

[188] The SAM/BAM Format Specification Working Group. Sequence alignment/map
format specification, 2022. https://samtools.github.io/hts-specs/SAMv1.pdf.

[189] Luke R. Thompson, Jon G. Sanders, Daniel McDonald, Amnon Amir, Joshua Ladau,
Kenneth J. Locey, Robert J. Prill, Anupriya Tripathi, Sean M. Gibbons, Gail Acker-
mann, Jose A. Navas-Molina, Stefan Janssen, Evguenia Kopylova, Yoshiki Vázquez-
Baeza, Antonio González, James T. Morton, Siavash Mirarab, Zhenjiang Zech
Xu, Lingjing Jiang, Mohamed F. Haroon, Jad Kanbar, Qiyun Zhu, Se Jin Song,

214

https://www.youtube.com/watch?v=xAoljeRJ3lU
https://samtools.github.io/hts-specs/SAMv1.pdf

Tomasz Kosciolek, Nicholas A. Bokulich, Joshua Lefler, Colin J. Brislawn, Gregory
Humphrey, Sarah M. Owens, Jarrad Hampton-Marcell, Donna Berg-Lyons, Valerie
McKenzie, Noah Fierer, Jed A. Furhman, Aaron Clauset, Rick L. Stevens, Ashley
Shade, Katherine S. Pollard, Kelly D. Goodwin, Janet K. Jansson, Jack A. Gilbert,
Rob Knight, and The Earth Microbiome Project Consortium. A communal catalogue
reveals earth’s multiscale microbial diversity. Nature, 551(7681):457–463, 2017.

[190] Helga Thorvaldsdóttir, James T. Robinson, and Jill P. Mesirov. Integrative Ge-
nomics Viewer (IGV): high-performance genomics data visualization and exploration.
Briefings in Bioinformatics, 14(2):178–192, 2013.

[191] Armin Töpfer. Juliet - one click minor variant calling, 2017. https://www.pacb.com
/wp-content/uploads/4May2017 ArminToepfer JulietMinorVariantCalling.pdf.

[192] Erdal Toprak, Adrian Veres, Jean-Baptiste Michel, Remy Chait, Daniel L. Hartl,
and Roy Kishony. Evolutionary paths to antibiotic resistance under dynamically
sustained drug selection. Nature Genetics, 44(1):101–105, 2012.

[193] Florian Trigodet, Rohan Sachdeva, Jillian F. Banfield, and A. Murat Eren. Assemblies
of long-read metagenomes suffer from diverse errors. bioRxiv, 2025.

[194] Anupriya Tripathi, Yoshiki Vázquez-Baeza, Julia M. Gauglitz, Mingxun Wang, Kai
Dührkop, Mélissa Nothias-Esposito, Deepa D. Acharya, Madeleine Ernst, Justin J. J.
van der Hooft, Qiyun Zhu, Daniel McDonald, Asker D. Brejnrod, Antonio Gonzalez,
Jo Handelsman, Markus Fleischauer, Marcus Ludwig, Sebastian Böcker, Louis-Félix
Nothias, Rob Knight, and Pieter C. Dorrestein. Chemically informed analyses of
metabolomics mass spectrometry data with Qemistree. Nature Chemical Biology,
17(2):146–151, 2021.

[195] Filippo Utro, Niina Haiminen, Enrico Siragusa, Laura-Jayne Gardiner, Ed Seabolt,
Ritesh Krishna, James H. Kaufman, and Laxmi Parida. Hierarchically labeled
database indexing allows scalable characterization of microbiomes. iScience, 23(4),
2020.

[196] Stefan Van Der Walt, S. Chris Colbert, and Gael Varoquaux. The NumPy array: a
structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22, 2011.

[197] Jacob VanderPlas, Brian Granger, Jeffrey Heer, Dominik Moritz, Kanit Wongsupha-
sawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott Sievert.
Altair: Interactive Statistical Visualizations for Python. The Journal of Open Source
Software, 3:1057, 2018.

[198] Sotirios Vasileiadis, Edoardo Puglisi, Maria Arena, Fabrizio Cappa, Pier S. Coc-
concelli, and Marco Trevisan. Soil bacterial diversity screening using single 16S rRNA
gene V regions coupled with multi-million read generating sequencing technologies.
PLoS One, 7(8):e42671, 2012.

215

https://www.pacb.com/wp-content/uploads/4May2017_ArminToepfer_JulietMinorVariantCalling.pdf
https://www.pacb.com/wp-content/uploads/4May2017_ArminToepfer_JulietMinorVariantCalling.pdf

[199] Yoshiki Vázquez-Baeza, Antonio Gonzalez, Larry Smarr, Daniel McDonald, James T.
Morton, Jose A. Navas-Molina, and Rob Knight. Bringing the dynamic microbiome
to life with animations. Cell Host & Microbe, 21(1):7–10, 2017.

[200] Yoshiki Vázquez-Baeza, Meg Pirrung, Antonio Gonzalez, and Rob Knight. EMPeror:
a tool for visualizing high-throughput microbial community data. GigaScience,
2(1):2047–217X, 2013.

[201] Bie M. P. Verbist, Kim Thys, Joke Reumers, Yves Wetzels, Koen Van der Borght,
Willem Talloen, Jeroen Aerssens, Lieven Clement, and Olivier Thas. VirVarSeq: a
low-frequency virus variant detection pipeline for Illumina sequencing using adaptive
base-calling accuracy filtering. Bioinformatics, 31(1):94–101, 2015.

[202] Riccardo Vicedomini, Christopher Quince, Aaron E. Darling, and Rayan Chikhi.
Strainberry: automated strain separation in low-complexity metagenomes using long
reads. Nature Communications, 12(1):4485, 2021.

[203] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nature Methods, 17(3):261–272, 2020.

[204] F. Vogel. Non-randomness of base replacement in point mutation. Journal of
Molecular Evolution, 1(4):334–367, 1972.

[205] Bo Wang, Lin Wan, Anqi Wang, and Lei M. Li. An adaptive decorrelation method
removes Illumina DNA base-calling errors caused by crosstalk between adjacent
clusters. Scientific Reports, 7(1):1–11, 2017.

[206] Jing Wang, Leon Raskin, David C. Samuels, Yu Shyr, and Yan Guo. Genome
measures used for quality control are dependent on gene function and ancestry.
Bioinformatics, 31(3):318–323, 2015.

[207] Alex D. Washburne, Justin D. Silverman, Jonathan W. Leff, Dominic J. Bennett,
John L. Darcy, Sayan Mukherjee, Noah Fierer, and Lawrence A. David. Phylogenetic
factorization of compositional data yields lineage-level associations in microbiome
datasets. PeerJ, 5:e2969, 2017.

[208] Michael Waskom, Olga Botvinnik, Joel Ostblom, Saulius Lukauskas, Paul Hobson,
Maoz Gelbart, David C. Gemperline, Tom Augspurger, Yaroslav Halchenko, John B.
Cole, Jordi Warmenhoven, Julian de Ruiter, Cameron Pye, Stephan Hoyer, Jake
Vanderplas, Santi Villalba, Gero Kunter, Eric Quintero, Pete Bachant, Marcel

216

Martin, Kyle Meyer, Corban Swain, Alistair Miles, Thomas Brunner, Drew O’Kane,
Tal Yarkoni, Mike Lee Williams, and Constantine Evans. mwaskom/seaborn: v0.10.0
(january 2020), January 2020.

[209] Zhi Wei, Wei Wang, Pingzhao Hu, Gholson J. Lyon, and Hakon Hakonarson. SNVer:
a statistical tool for variant calling in analysis of pooled or individual next-generation
sequencing data. Nucleic Acids Research, 39(19):e132–e132, 2011.

[210] Aaron M. Wenger, Paul Peluso, William J. Rowell, Pi-Chuan Chang, Richard J. Hall,
Gregory T. Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov,
Nathan D. Olson, Armin Töpfer, Michael Alonge, Medhat Mahmoud, Yufeng Qian,
Chen-Shan Chin, Adam M. Phillippy, Michael C. Schatz, Gene Myers, Mark A.
DePristo, Jue Ruan, Tobias Marschall, Fritz J. Sedlazeck, Justin M. Zook, Heng
Li, Sergey Koren, Andrew Carroll, David R. Rank, and Michael W. Hunkapiller.
Accurate circular consensus long-read sequencing improves variant detection and
assembly of a human genome. Nature Biotechnology, 37(10):1155–1162, 2019.

[211] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science
Conference, pages 56–61, 2010.

[212] Ryan R. Wick, Mark B. Schultz, Justin Zobel, and Kathryn E. Holt. Bandage:
interactive visualization of de novo genome assemblies. Bioinformatics, 31(20):3350–
3352, 2015.

[213] Andreas Wilm, Pauline Poh Kim Aw, Denis Bertrand, Grace Hui Ting Yeo, Swee Hoe
Ong, Chang Hua Wong, Chiea Chuen Khor, Rosemary Petric, Martin Lloyd Hibberd,
and Niranjan Nagarajan. LoFreq: a sequence-quality aware, ultra-sensitive variant
caller for uncovering cell-population heterogeneity from high-throughput sequencing
datasets. Nucleic Acids Research, 40(22):11189–11201, 2012.

[214] Elizabeth A. Winzeler, Daniel D. Shoemaker, Anna Astromoff, Hong Liang, Keith
Anderson, Bruno Andre, Rhonda Bangham, Rocio Benito, Jef D. Boeke, Howard
Bussey, Angela M. Chu, Carla Connelly, Karen Davis, Fred Dietrich, Sally Whelen
Dow, Mohamed El Bakkoury, Françoise Foury, Stephen H. Friend, Erik Gentalen,
Guri Giaever, Johannes H. Hegemann, Ted Jones, Michael Laub, Hong Liao, Nicole
Liebundguth, David J. Lockhart, Anca Lucau-Danila, Marc Lussier, Nasiha M’Rabet,
Patrice Menard, Michael Mittmann, Chai Pai, Corinne Rebischung, Jose L. Revuelta,
Christopher J. Roberts, Petra Ross-MacDonald, Bart Scherens, Michael Snyder,
Sharon Sookhai-Mahadeo, Reginald K. Storms, Steeve Véronneau, Marleen Voet,
Guido Volckaert, Teresa R. Ward, Robert Wysocki, Grace S. Yen, Kexin Yu, Katja
Zimmermann, Peter Philippsen, Mark Johnston, and Ronald W. Davis. Functional
characterization of the S. cerevisiae genome by gene deletion and parallel analysis.
Science, 285(5429):901–906, 1999.

217

[215] Zhiyong Xu, Dimitrios Zikos, Nikolaus Osterrieder, and B. Karsten Tischer. Genera-
tion of a complete single-gene knockout bacterial artificial chromosome library of
cowpox virus and identification of its essential genes. Journal of Virology, 88(1):490,
2014.

[216] Guangchuang Yu. Using ggtree to visualize data on tree-like structures. Current
Protocols in Bioinformatics, 69(1):e96, 2020.

[217] Yan Zhang, Fan Jiang, Boyuan Yang, Sen Wang, Hengchao Wang, Anqi Wang, Dong
Xu, and Wei Fan. Improved microbial genomes and gene catalog of the chicken gut
from metagenomic sequencing of high-fidelity long reads. GigaScience, 11:giac116,
2022.

[218] Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller. A greedy algorithm
for aligning DNA sequences. Journal of Computational Biology, 7(1-2):203–214,
2000.

[219] Zhenmiao Zhang, Ishaan Gupta, and Pavel A. Pevzner. GenomeDecoder: Infer-
ring segmental duplications in highly-repetitive genomic regions. Bioinformatics,
41(2):btaf058, 2025.

[220] Jaime E. Zlamal, Semen A. Leyn, Mallika Iyer, Marinela L. Elane, Nicholas A. Wong,
James W. Wamsley, Maarten Vercruysse, Fernando Garcia-Alcalde, and Andrei L.
Osterman. Shared and unique evolutionary trajectories to ciprofloxacin resistance in
gram-negative bacterial pathogens. mBio, 12(3):e00987–21, 2021.

218

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Visualization methods for general 'omic data
	Visualizing 'omic feature rankings and log-ratios using Qurro
	Abstract
	Introduction
	Implementation
	Case study: the gills of Scomber japonicus
	Conclusion
	Data availability
	Acknowledgements
	Funding
	Conflict of interest statement

	EMPress enables tree-guided, interactive, and exploratory analyses of multi-omic data sets
	Abstract
	Importance
	Introduction
	Results
	Discussion
	Materials and Methods
	Acknowledgements

	Metagenome assembly of long and accurate reads using iterative downsampling
	Abstract
	Introduction
	Results
	Assembly of a mock community
	Assembly of a chicken gut metagenome

	Methods
	Iterative downsampling and assembly
	Graph simplification
	Classifying sequences as similar or dissimilar
	The life cycle of a read
	Identifying and analyzing ``reference'' edges in the graph
	Software dependencies
	Software design

	Discussion
	Acknowledgements

	Analyzing rare mutations in metagenomes assembled using long and accurate reads
	Abstract
	Introduction
	Deep DNA sequencing and rare mutations
	Identifying rare mutations in metagenomic data
	Simulation models of sequencing data
	Phasing rare mutations in HiFi metagenomic data
	The strainFlye pipeline

	Results
	Demonstrating strainFlye
	Computing mutation spectra
	The target-decoy approach for estimating the FDR of identified mutations
	Estimating the FDR of identified rare mutations using the TDA
	Context-dependent TDA
	Codon and amino acid mutation matrices
	Diversity indices
	Genomic locations of mutations
	Growth dynamics of a metagenome
	Phasing identified mutations

	Discussion
	Methods
	Automatically selecting a decoy contig
	Accounting for indisputable mutations
	Fixing the estimated FDR of identified rare mutations in a target contig
	Predicting protein-coding genes in contigs
	Constructing smoothed reads
	Constructing virtual reads
	Assembling smoothed and virtual reads
	Data sets
	Software dependencies
	Software availability

	Competing interest statement
	Acknowledgements

	Efficient creation and visualization of exact dot plot matrices
	Abstract
	Introduction
	Motivation
	Related work

	Results
	Creating exact dot plots of long sequences
	Visualizing multiple dot plots in a single figure

	Methods
	Space-efficient matrix storage
	Space- and time-efficient identification of shared k-mers
	Rapid visualization of large dot plot matrices
	Data availability
	Software dependencies
	Software availability

	Discussion
	Acknowledgements

	Supplemental material for Chapter 1
	Supplemental material for Chapter 1.1
	Computing feature differentials using Songbird
	Qurro log-ratio-selection controls used
	Details on Qurro (and Songbird) input data filtering

	Supplemental material for Chapter 1.2
	Differential abundance comparison of oral microbiomes
	Animated analysis of SARS-CoV-2

	Supplemental material for Chapter 3
	Read alignment
	Assembly graph
	Coverages and deletion-rich positions
	Demonstrating strainFlye on the ChickenGut dataset
	Applying LoFreq to the SheepGut dataset
	Growth of the number of p-mutations per megabase as p decreases
	Codon position analysis details
	Nonsynonymous, nonsense, and transversion decoy contexts
	Identifying mutations based solely on read counts
	Constructing and visualizing mutation matrices
	Diversity index details
	Hotspot genes in the three selected MAGs
	Identifying strains in the most mutated gene of BACT1
	Plots of mutation locations
	Investigating coldspots
	Growth dynamics
	The link graph structure for haplotype visualization
	Haplotypes of the most mutated gene in CAMP
	Smoothed haplotype assembly graphs

	Bibliography

