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ABSTRACT
Recent and frequent advances in DNA sequencing technolo-
gies and algorithms have enabled the study of microbiomes,
populations of microorganisms in environments ranging from
the human gut to the Earth’s oceans, at higher and higher
degrees of resolution. As the quantity and quality of avail-
able sequencing data has increased, biologists have become
able to ask increasingly targeted questions about the nature
of individual microbial samples. Here I provide a broad sur-
vey of the study of microbiomes, with a focus on sequencing-
based approaches and metagenome sequence assembly. I
then discuss next steps for the field, leading to the goal of
assembling individual strains of genomes from microbiome
sequencing data.

1. INTRODUCTION
1.1 A brief history of microbiome research
Although sequencing technologies have accelerated the study
of microbes and microbial communities in recent decades,
knowledge of the ubiquity and importance of microbes is
centuries old. The field of microbiology dates back to An-
tonie van Leeuwenhoek’s seventeenth century C.E. observa-
tion, using microscopes, of “little Animals ... observed in
Rain- Well- Sea- and Snow water; as also in water wherein
Pepper had lain infused” [67, 65, 108]. The idea that mi-
crobes may have an impact in human health is even older:
Marcus Terentius Varro wrote in the first century B.C.E.
about “certain minute creatures which cannot be seen by
the eyes, which float in the air and enter the body through
the mouth and nose and there cause serious diseases” [125].
Finally, “yellow soup” containing human fecal matter has a
long history of use in traditional Chinese medicine, dating
back to a case record written by Hong Ge in the fourth cen-
tury C.E. [39, 93].

The “yellow soup” example bears close resemblance to what
has since been termed fecal microbiota transplantation (FMT),
in which fecal matter from a donor individual is transplanted
to a sick individual’s gastrointestinal tract [9, 39]. Centuries
later, there is consensus today that FMTs (when performed
properly) are effective at treating Clostridium difficile in-
fection (CDI) [9, 93]. However, the scope of FMTs’ abil-
ity to benefit human health is controversial [114]. There
is disagreement over exactly which health conditions FMTs
can impact [129], and there has been caution against im-
mediate reliance on FMTs as a treatment method for CDI
[123]. In any case, the effectiveness of FMTs for treating
CDI nonetheless illustrates the potential for microbiome re-

search to improve human health.

1.2 The promise of microbiome research
This potential, along with the advent of high-throughput
DNA sequencing [36], has fueled many studies in recent
years on how the gut microbiomes of individuals from across
the world differ [74], how the gut microbiomes of individu-
als change over time [17, 23], and relationships between the
host gut microbiome and host health [115, 9, 117]. Research
has also focused on the microbiomes of other body sites be-
sides the gut: for example, the human skin and oral micro-
biomes [23]. The taxonomic compositions (e.g. “which spe-
cific microbes are present in these samples?”) of these and
other body sites’ microbiomes have also been linked with
relevant host diseases; for example, variations in skin micro-
biomes’ compositions have been linked to atopic dermatitis
[81], and variations in oral microbiomes’ compositions have
been linked to dental caries [8].

The study of microbiomes has many societal applications
besides human health. Detailed knowledge of the particular
microbes present within a sample can aid in food safety [94,
30]; biodefense [97, 79]; environmental surveying [27]; and
in the study of antibiotic resistance [68, 142, 119], to name
a few examples.

1.3 Reckoning with the “hype and hyperbole”
of microbiome research

In spite of this potential in the study of microbiomes—
for human health and for various other applications—the
field has struggled with the ability to reproduce many of
its own results [108], and the influx of microbiome stud-
ies seen in recent years has not resulted in a correspond-
ingly large amount of clear, reproducible relationships be-
tween microbiome taxonomic composition and host disease
state [129]. Obvious cases where individual microbes have
been reproducibly implicated in certain host diseases, such
as Clostridium difficile and CDI or Helicobacter pylori and
various stomach-based diseases [129, 114, 93], are the ex-
ception rather than the norm. Counterintuitively, positive
results—seemingly novel, compelling findings that link tax-
onomic composition, diversity measurements, or other mi-
crobiome characteristics to the conditions being studied—
nonetheless abound in microbiome research: the field, some
argue, is plagued by “hype and hyperbole” [129].

There are various reasons for these murky results. Many of
these reasons are not especially specific to microbiome re-
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search, and cause similar trouble for other areas of science:
a few of these classic reasons include limited sample sizes
[129], institutional biases against the publication of null re-
sults [129, 46], and researchers hypothesizing after a study’s
data has already been collected without reporting so, also
known as “HARKing” or “SHARKing” [50].

These already-challenging problems are complemented by a
host of problems specific to microbiome research and related
areas of bioinformatics. One of the most obvious of these is
uncertainty on how microbiome sequencing data should be
generated and computationally analyzed in the first place,
and uncertainty on the advantages and disadvantages of the
different available methods. Many of these approaches dif-
fer widely in their resolution, the amount of detail gener-
ated about the specific microbes in a microbiome; this is
an important factor to consider in study design and data
interpretation [45, 57].

Throughout this report I will focus on the goal of improv-
ing the resolution with which researchers can study micro-
biomes. The ability to study individual strains of the mi-
crobes in a microbiome—that is, all unique microbial genomes
present in a sample, rather than aggregate information about
species, genera, etc.—will help in understanding the biolog-
ical functions of these microbes [127, 113]. This is because
different strains of the same species of microbe can have
drastically different phenotypes [127, 103, 113], which may
explain some of the aforementioned contradictory results en-
demic to microbiome research. In the next section I examine
one particularly common class of methods used for studying
microbiomes, with an eye on these methods’ resolution.

2. CULTURE-INDEPENDENT METHODS
FOR SEQUENCING MICROBIOMES

Conventional methods of studying microbiomes generally in-
volve the isolation and culturing of individual microbes from
a sample. However, researchers thus far have been unable
to culture the vast majority (estimated at over 99%) of mi-
crobes [51]. Furthermore, the process of culturing can result
in unintended changes to the microbe being cultured due to
adaptive evolution [128]. These problems complicate the
study of essentially all microbiomes.

Culture-independent methods, in which the microbes in a
sample are studied by sequencing their DNA en masse rather
than by attempting direct culturing, can circumvent these
problems [51, 95, 30, 128]. Although not all microbes are
easily culturable, all have genomes: and by extracting DNA
from a sample and sequencing some or all of this DNA, re-
searchers can study the microbes present in a sample with-
out many of the limitations of traditional culture-based meth-
ods. Culture-independent methods open the door for iden-
tifying a larger number of microbes present in a sample
than would be available through culturing, and also pro-
vide the ability to process many samples rapidly using high-
throughput DNA sequencing techniques. However, these
methods also introduce many biological and computational
challenges—and have their own biases and shortcomings—
that need to be overcome and acknowledged in order to use
them effectively.

Various culture-independent methods have been introduced

over the years; early methods include terminal restriction
fragment length polymorphism, denaturing gradient gel elec-
trophoresis, and fluorescence in situ hybridization [109, 44,
30]. Here, I focus on two more relatively recent methods
which have largely superseded these older ones, at least from
the perspective of studying microbes within microbiomes.
The first of these modern, popular culture-independent meth-
ods is marker gene sequencing (also referred to as ampli-
con sequencing, metabarcoding, etc.), and the second is
metagenome sequencing (also referred to as metagenomics,
shotgun metagenome sequencing, whole metagenome sequenc-
ing, etc.) [75]. Both approaches generate sequencing data
(“reads” of DNA) describing the microbial genomes in a
metagenome, and standard pipelines for processing both
types of data often produce abundance table(s) of samples
by features [38]. However, beyond these surface-level simi-
larities, the details, potential uses, and limitations of these
data vary substantially between methods [38].

2.1 Marker gene sequencing
In 1977, Carl Woese and George Fox announced the discov-
ery of the archaea, a distinct group of microbial life [135].
Woese and Fox made this discovery using analysis of ribo-
somal RNA (“rRNA”) gene sequences, which are shared by
the genomes of bacteria, archaea, and eukaryotes: the subtle
differences between these gene sequences in different organ-
isms’ genomes made it possible for Woese and Fox to propose
an evolutionary history in which the already-accepted bac-
terial and eukaryotic domains of life were complemented by
a third domain, the archaea [135]. Despite initial confusion
and backlash from the scientific community, in part due to
articles from the general press featuring dubious headlines
like “Martianlike Bugs May Be Oldest Life” [102], the truth
bore out: today the existence of the archaea is widely ac-
cepted, and—in a related turn of events—certain rRNA gene
sequences are commonly used as marker genes to study the
microbes present in a microbiome [38, 137].

Useful marker genes, including certain rRNA genes, tend to
have a specific structure that includes hypervariable (high
mutation rate) region(s) surrounded by conserved (low mu-
tation rate) regions [111]. The conserved regions in the gene
enable the design of primers for use in a polymerase chain
reaction (PCR) procedure, which can be used to selectively
amplify specific region(s) of the marker gene sequence for
the genomes present within a sample that contain this gene
[84, 137]. The primers can be designed to “target” these con-
served regions, which—since they have low mutation rates—
should be similar or identical across the many copies of the
gene observed in a population of microbes. The hypervari-
able regions inside the gene sequence, on the other hand,
are useful for the opposite reason: the high mutation rates
in these regions make it possible to compare the amplified
gene sequences from different microbes, which usually show
obvious differences in these hypervariable regions for evolu-
tionarily distant microbes. In essence, marker genes are use-
ful for studying the taxonomic composition of microbiomes
for the same reasons they were useful to Woese and Fox in
studying the evolutionary history of life.

The 16S rRNA gene is arguably the most common marker
gene in use today. This gene is specific to bacteria and
archaea [138] and contains nine hypervariable regions [137,
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126]; different studies have sequenced some or all of these
regions [126, 22]. Whether using the 16S rRNA gene or
another marker gene [138], marker gene sequencing enables
sequencing the genetic material of the microbes in a sam-
ple without having to sequence the full genomes of these
microbes. For context, the full 16S rRNA gene is roughly
1,550 nucleotides long [28], whereas bacterial genomes gener-
ally range from 100,000 to 15,000,000 nucleotides in length
[91]: sequencing some or all of the 16S rRNA gene thus
represents a drastic reduction in the amount of sequencing
necessary to perform in order to profile a single microbe, let
alone thousands. In this way, marker gene sequencing pro-
vides a broad taxonomic overview of the types of microbes
present in a sample [38].

Although marker gene sequencing is relatively convenient
and cost-effective, its output information is inherently in-
complete. Many marker genes are only specific to certain
types of microbes: although rRNA genes of some kind are
shared by bacteria, archaea, and eukaryotes [135], the 16S
rRNA gene is limited to bacteria and archaea and the 18S
rRNA gene is limited to eukaryotes [138]. Furthermore, de-
spite being eukaryotes, fungi are often profiled using other
markers such as the internal transcribed spacer (ITS) re-
gion: this is because fungi have fewer hypervariable regions
in the 18S rRNA gene than other eukaryotes, making the
18S rRNA gene less useful as a marker for fungi [38, 111].1

The results of a single marker gene sequencing study are
thus limited, as compared to metagenome sequencing stud-
ies which can capture information about microbes from all
domains of life without reliance on shared marker regions
(see section 2.2).

The limitations of marker gene sequencing go beyond speci-
ficity to certain types of microbes. Many of these are inher-
ent limitations that have been well-known since the early
days of marker gene sequencing [109]. Briefly, some organ-
isms may have multiple copies of a marker gene sequence
[56]; errors in the PCR process can introduce “chimeric”
gene sequences [52]; and there is ongoing disagreement as
to the best-practice way to correct sequencing errors in the
raw read data generated by marker gene sequencing [21, 110,
57].2

From the perspective of studying strain-level genomes of the
microbes within a microbiome, as this report has set out to
do, perhaps the most damning limitation of marker gene se-
quencing is its lack of resolution. The marker gene sequences
of different strains of the same species, or even of different
species within the same genus, are often indistinguishable
[69]; it is thus standard practice to ignore taxonomic clas-
sifications more specific than the genus level when working
solely with 16S rRNA marker gene sequencing data [34].3

Notably, this is not a problem for many uses of marker gene
1The ITS region is not technically a single gene, so calling
it a “marker gene” is a misnomer [38]. However, the ITS
region is nonetheless useful as a marker for fungi [111], and
is used in essentially the same way as “true” marker genes
[138].
2There are of course additional limitations (and benefits) of
marker gene sequencing besides these. Reference [38] pro-
vides a thorough overview of the differences between marker
gene and metagenome sequencing.
3An example taxonomic classification for a given 16S

sequencing; the method is useful for profiling the taxonomic
compositions of microbiomes at a broad level, and marker
gene sequencing projects are currently far less expensive
and require far less computational effort than comparable
metagenome sequencing projects [109].

Regardless, since the goal of this report is studying micro-
bial genomes in detail, I turn next to metagenome sequenc-
ing. This is another culture-independent method that can
provide more detailed resolution of the microbes in a micro-
biome.

2.2 Metagenome sequencing
In metagenome sequencing, all DNA in a sample is randomly
fragmented and then sequenced [104]. This is in contrast to
marker gene sequencing, in which only the amplified DNA
sequences in a sample (the marker gene, or certain region(s)
of the marker gene) are sequenced.

Although many software pipelines and best-practice rec-
ommendations for processing marker gene sequencing data
have, to an extent, been refined over the years [109, 57],
metagenome sequencing research is somewhat less standard-
ized [57]. This is due in part to the many choices available
to researchers analyzing metagenome sequencing data, as
well as the often wildly different characteristics of different
metagenome sequencing datasets.

Since the reads produced by metagenome sequencing are
comprised of DNA from throughout all parts of the genomes
in a sample, not just from specific marker regions, metagenome
sequencing provides researchers the opportunity to iden-
tify genes, promoters, operons, and other genomic elements
from the sequencing data [54, 118]. Metagenome sequenc-
ing therefore enables functional annotation of a microbiome
[136, 109].

The exact definition of the term “function” is controversial in
biology [49]. In the context of metagenomes, the term “func-
tional annotation” generally refers to an attempt to study
the practical effects of genes, operons, metabolic pathways,
and other potentially-but-not-necessarily “active” biological
units in a sample [45, 136, 38]. This is often done by compar-
ing sequences to a reference database with information on
function in known organisms [38]; recent years have also seen
the development of metabolic modelling techniques that at-
tempt to provide a more realistic estimate of functional ac-
tivity in a microbiome [45, 37].

In any case, functional annotation can provide important
context about metagenome sequencing data—for example,
although taxonomic compositions vary noticeably between
microbiomes from different human body sites, functional an-
notation shows that metabolic pathway relative abundances
seem very stable across these body sites’ microbiomes [53].
rRNA gene sequence or region thereof might look some-
thing like k__Bacteria; p__Firmicutes; c__Bacilli;
o__Lactobacillales; f__Lactobacillaceae;
g__Lactobacillus; s__brevis [18]. In some cases
(depending on the sequencing technology, the marker gene,
the taxonomic classification method, etc.) a researcher
may be confident enough to say that this gene sequence
originates from Lactobacillus brevis, but often it is safer to
simply say that it is from the genus Lactobacillus.
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This result implies that, although two microbiomes might
be populated by very different types of microbes, the overall
functional activities of both microbiomes may be nonethe-
less similar.

In spite of this promise, many functional annotation methods—
including the method [1] used to determine the aforemen-
tioned result in [53]—have been criticized as so-called bag-of-
genes approaches that assume unrealistically that all genes
in a metagenome act independently and not as units of
individual genomes [131, 45]. Functional annotation can
thus be improved by attempting to reconstruct the micro-
bial genomes present in a metagenomic sample, and then
performing functional annotation that takes these genomes
into account, rather than just considering raw reads [45].

The process of reconstructing a genome, or at least longer
fragments of a genome, from the reads produced by a se-
quencing machine is referred to as assembly. Entire micro-
bial genomes are rarely recovered completely in individual
reads of DNA: as is described in section 3, a large amount
of computational work goes into the process of assembling
longer sequences from raw reads [86].4

Once reads have been generated (and optionally processed
using various quality control methods), metagenome sequenc-
ing studies can make use of assembly-based or read-based
computational methods to study the taxonomic and func-
tional characteristics of a sample [104]. Although perform-
ing assembly is not a prerequisite for many methods, longer
DNA sequences generally contain more information, so be-
ginning an analysis with assembly is desirable if possible
[136, 57].

I note that, to an extent, functional information is pos-
sible to predict using marker gene sequencing data [66]:
however, the greater resolution afforded by metagenome se-
quencing generally makes metagenome functional annota-
tions far more valuable [45], and predictive methods for
marker gene sequencing data have been shown to perform
poorly on samples from less-well-studied microbiomes [122].

Compared to marker gene sequencing, metagenome sequenc-
ing affords researchers the theoretical ability to assemble in-
dividual microbial genomes from a microbiome, and in so
doing study and compare microbiomes in detail. In order
to come closer to this goal, I next focus on the process of
metagenome assembly.

3. (META)GENOME ASSEMBLY
Unfortunately for this report’s goal, metagenome assem-
bly is a far more difficult problem than genome assembly.
Genome assembly (also known as single-genome assembly)
involves assembling the sequence of a single genome that has
been isolated and cultured [136, 58]; metagenome assembly,
in which the input is many similar and different genomes
from an uncultured sample, presents many unique problems
[87, 90, 58].

4That being said, the arrival of sequencing technologies that
can generate increasingly long reads (as discussed in section
3.1) brings the field closer and closer to this goal, especially
for relatively short genomes [60].

In order to understand the unique challenges posed by meta-
genome assembly, I will examine the general structure of the
assembly problem. I begin by discussing the input sequenc-
ing data, and how different types of sequencing data can
complicate or simplify assembly; I then discuss the general
outputs of assembly, with a focus on how these outputs are
often used when performing metagenome assembly. Finally,
I conclude this section by examining various types of assem-
bly methods.

3.1 Assembly input: reads
The output of a DNA sequencing machine, and the main in-
put to an assembly tool, is a collection of reads.5,6 Each read
can be thought of as a string from the alphabet {A,C,G, T},
corresponding respectively to the four nucleotides adenine,
cytosine, guanine, and thymine.7 Reads are often accom-
panied by corresponding numeric values indicating quality
scores, which generally indicate the confidence of the se-
quencing machine that a given nucleotide at a given position
is correct [29].

Depending on the DNA sequencing machine and the way it is
being used, many attributes of these reads may change. The
number of reads, the approximate lengths of these reads, and
the expected error rates of these reads can all vary substan-
tially between technologies [5, 60]. For the sake of clarity, I
take a brief detour and examine some of these technologies—
and their differences’ impacts on assembly—below.

3.1.1 A brief overview of sequencing technologies,
and the reads they generate

The 1970s saw the development of multiple early DNA se-
quencing techniques [105, 73, 106, 12]. The most famous
of these, known as Sanger sequencing [112], was published
in 1977 [106]. Sanger sequencing was originally a labor-
intensive technique: researchers would need to manually
read off nucleotides from a gel in “reads” of at most ∼80
nucleotides [106, 112]. In the years since Sanger sequenc-
ing’s initial development, the process has been automated
and improved to the point where it can produce reads of at
most ∼1,000 nucleotides with error rates as low as 0.001%
[116]. However, despite these improvements the method re-
mains expensive and relatively low-throughput [130]. Many
uses of Sanger sequencing today are therefore constrained to
confirming other sequencing technologies’ results in applica-
tions where accuracy is especially important [13, 83].

Many sequencing technologies have been developed since
Sanger sequencing [36]. To understand the types of reads
used as input to modern metagenome assembly, I focus in
5Herein I refer to assembly tools as just assemblers.
6As briefly mentioned in section 2.2, some workflows suggest
an initial “quality control” step in which reads are filtered,
trimmed, or otherwise processed to address undesirable se-
quencing artifacts [141, 104]. Since some assemblers do not
require this step (and/or perform this step automatically),
for example [59] and [58], I omit a detailed description of
quality control approaches in this report.
7This alphabet is occasionally extended to include other
symbols when the nucleotide at a given position is am-
biguous: see [32]. An easy-to-access table showing this ex-
tended alphabet is available as of writing at https://en.
wikipedia.org/wiki/Nucleic_acid_notation.
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the remainder of this section on three broad classes of tech-
nologies that are all commonly in use today.

The first of these technologies are referred to as short-read
technologies. These are exemplified today by the Illumina
MiSeq and HiSeq platforms, which use “sequencing-by-synthesis”
technology [14] to produce reads of up to ∼150 nucleotides
[101]. These reads boast a relatively low error rate of less
than 1% [101, 57]; the combination of short read length and
high accuracy means that these technologies are often used
in marker gene sequencing (see section 2.1) [124, 57].

The second of these technologies can be generally described
as long, error-prone reads [59]. These are produced by the
Oxford Nanopore and PacBio single-molecule real time (SMRT)
technologies [132]. These reads can span over 10,000 nu-
cleotides, which is extremely useful for assembly (as dis-
cussed in section 3.1.2.1). However, these reads have much
higher error rates than short reads, with error rates of around
10–25% [132, 101]. This can complicate the process of sep-
arating “real” variations in the data from sequencing errors
(as discussed in section 3.1.2.2).

The third and final of these technologies are long and ac-
curate reads, also referred to as simply HiFi reads [132].
These are produced by PacBio circular consensus sequenc-
ing technology, and represent an improvement of the SMRT
technology mentioned above [132]. In essence, HiFi reads of-
fer the best of both worlds from short and long reads: they
can span over 10,000 nucleotides and have error rates of
less than 1% [132, 16], although they are somewhat shorter
than some long, error-prone reads [16]. It is worth noting
that the low error rate for HiFi reads only applies to errors
in base calling (i.e. in “point” mutations); HiFi reads have
a notably higher error rate when sequencing insertions and
deletions [132]. That said, HiFi reads are a recent devel-
opment, and work has already been done on accounting for
these structural errors after sequencing—for example using
machine learning approaches [63].

This three-category description of sequencing (short reads,
long and error-prone reads, HiFi reads) omits some details.
It is possible to combine multiple sequencing technologies
in a single study; so-called “hybrid” assemblers have been
developed to exploit this sort of data [15]. Additionally,
reads can be more complex than individual linear strings
of DNA: certain sequencers can produce so-called paired-
end reads consisting of two reads that are separated by a
roughly known length [101, 76]. Paired-end reads can be
used to improve assembly by helping to resolve repeats (see
section 3.1.2.1) [76, 31].

3.1.2 Sequencing technologies’ impacts on assembly
The sequencing technologies I have examined so far vary
widely in their read lengths and error rates. Here I examine
the impact of these two factors on assembly (with the caveat
that many other factors besides these two can have large
impacts on the process, for example coverage [also discussed
in section 3.3.3] [86] and contamination [35]).

3.1.2.1 Read lengths and repeat resolution
The key challenge in assembly, whether in single-genome
or metagenome assembly, is accounting for repeats [47]. A

repeat is defined as an “identical, or nearly identical, [stretch]
of DNA” [76]. Repeats complicate assembly because they
introduce ambiguity as to the full structure of a genome,
or of genomes: assembling a genome with many repeats is
comparable to putting together a jigsaw puzzle containing
many “blue sky” pieces [72].

Repeats in an assembly become problematic when they ex-
ceed the read length [47]. As I will discuss later in sec-
tion 3.3.3, this is a reason why short reads have historically
failed to provide contiguous metagenome assemblies [16, 72].
Assembly projects, and in particular metagenome assembly
projects, thus benefit tremendously from longer read lengths
that can span repeats [72].

3.1.2.2 Error rates and variant calling
As may be expected, assembly projects also benefit from
lower read error rates. Depending on the assembly algo-
rithm in use (see section 3.3), the assembly process will
often involve the observation (e.g. after sequence align-
ment) of multiple overlapping reads at a given position in
a partially-reconstructed genome [62, 89]. In many cases,
these reads’ overlapping positions will be similar but not
identical. The assembler must then determine whether each
non-unanimous position is the result of sequencing error or
of real variation [80].

Lower error rates permit more confident classification of
these sorts of positions as “real” variations or as errors.
Lower error rates also enable the detection of rarer varia-
tions [134], which in the context of microbiome sequencing
data can indicate rare strains of a microbe seen in a mi-
crobiome [89, 16]. The process of distinguishing variations
from errors is referred to as variant calling; although this is
a well-studied problem when comparing sequencing data to
a single reference sequence [33], dealing with variations is a
challenging problem in the context of de novo assembly (see
section 3.3.1) [80].

How an assembler handles these sorts of ambiguities—whether
the assembler treats an ambiguous position as an error or
as a legitimate variation—is reflected in the output data
structures produced by an assembler. I focus next on these
structures and their interpretation.

3.2 Assembly outputs
Although many different assembly algorithms exist, assem-
blers tend to produce mostly similar output. That being
said, understanding how to interpret these outputs is critical—
especially when performing assembly on a complex micro-
biome sequencing dataset, when the best possible assembly
given the limitations of the data will usually be imperfect.
Here I discuss the outputs produced by assembly and how
these outputs are often used in downstream applications.

3.2.1 Contigs
The main output of an assembler is a collection of con-
tigs representing fragments of DNA joined together from
reads [120]. Similarly to reads, contigs can be thought of as
strings from the alphabet {A,C,G, T}. In the ideal assem-
bly project, one contig would be recovered for each unique
molecule of DNA present in a sample; in practice, there will
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usually be more contigs present due to difficulties encoun-
tered in assembly, for example due to repeats (see section
3.1.2.1) [133].

Many metrics exist to evaluate the relative “quality” of a set
of contigs produced by an assembly [20]; arguably the most
common of these is the N50 metric, which measures the
length of the contigs in an assembly [40]. Although the N50
and other metrics can be useful when considered carefully,
they are vulnerable to Strathern’s generalization of Good-
hart’s law: namely, that “When a measure becomes a target,
it ceases to be a good measure” [121, 86]. For example, an
antagonistic assembler could naïvely concatenate all reads
together to achieve a seemingly good N50 metric [82].

After metagenome assembly, in particular, contigs are of-
ten combined—or binned—into groups of contigs that puta-
tively originate from the same genome [4, 57, 19]. These bins
are referred to as metagenome-assembled genomes (MAGs).
MAGs are then often evaluated using methods such as CheckM
[96] which make use of known single-copy genes [19]. CheckM
estimates completeness (“how much of the full genome have
we recovered?”) and contamination (“to what degree are
other genomes mixed with this MAG?”) of bacterial and ar-
chaeal MAGs [96, 2, 35]. Guidelines have been proposed
for how to interpret these statistics for a given MAG [19],
although—as noted in its original publication—CheckM runs
into problems when working with less-well-studied or non-
bacterial / archaeal genomes [96]. To an extent, then, the
same caveats as with the N50 and other assembly metrics
also apply to CheckM’s estimates of completeness and con-
tamination.

In addition to MAGs produced by binning, recent metagenome
assembly projects have seen the advent of entire contigs
being classified by CheckM as high-completeness and low-
contamination—this is an encouraging sign that improve-
ments to sequencing technologies and algorithms are less-
ening the difficulties of metagenome assembly, enabling the
automatic recovery of complete or nearly-complete microbial
genomes from microbiome sequencing data [58, 16].

Although these immediate “MAG-quality” contigs are the
ideal outcome of a metagenome assembly project, most stud-
ies are not so lucky: after performing assembly, the vast
majority of genomes are usually still split up into multiple
contigs. To get context on how these contigs relate to each
other, it is therefore often useful to consider additional as-
sembly outputs besides the contigs alone.

3.2.2 Assembly graph
As will be discussed later in section 3.3.2, many assembly
algorithms model the assembly problem as a graph traversal.
In addition to contigs, many assemblers thus also output an
assembly graph representing the connections between contigs
in the data [133].

Due to assembler differences regarding the exact graph struc-
tures in use, providing a universal formal definition of an
assembly graph is challenging. Regardless of their details,
these graphs are usually visualized in practice as directed or
undirected graphs G = (V,E), where nodes ∈ V correspond
to contigs and edges ∈ E connect overlapping contigs [58,

133, 42].

Assembly graphs can be useful in representing diversity in
a metagenomic dataset [48]. For example, variations be-
tween otherwise similar sequences might result in a bubble
structure—in which a single path in the graph splits into
multiple (usually parallel) paths, after which these paths
converge back to a single path [80].8

Recent years have accordingly seen a rise in the visualization
of assembly graphs [133, 42], as well as in algorithms that
make use of the assembly graph to identify further infor-
mation about the strain-level genomes present in a dataset
[103, 48, 61].

3.3 Assembly methods
The assembly process has been compared humorously to
sausage-making [26]. Having examined the ingredients of
the proverbial sausage (section 3.1) and what researchers
can expect to get out of the process (section 3.2), I turn fi-
nally to the sausage-making process itself and the algorithms
involved therein.

It is convenient to think of assemblers in terms of dichotomies:
this section describes three such dichotomies that help clas-
sify assemblers. Although these are mostly false dichotomies
(there is no reason a project could not use both de novo and
reference-based assembly approaches, for example) these dis-
tinctions are nonetheless convenient for thinking about as-
sembly methods. The third and final dichotomy consid-
ered examines some of the factors and shared struggles that
distinguish specialized metagenome assemblers from tradi-
tional single-genome assemblers.

3.3.1 de novo versus reference-based assemblers
An important distinction to make in the context of assem-
bly, whether assembling single-genome or metagenome data,
is whether de novo or reference-based approaches are be-
ing used. de novo assembly methods use only the avail-
able sequencing data; reference-based methods additionally
make use of reference sequences of some sort, for example
already-assembled genomes stored in a reference database
like RefSeq [92, 80]. If sufficient reference data exists for the
genome(s) in a sample, reference-based methods can dras-
tically simplify the assembly process—since the problem of
assembling reads into genome(s) can be reduced to, or at
least aided by, the well-studied problem of aligning reads to
reference genome(s) [107, 100].

Many de novo and reference-based methods alike exist for as-
sembling single-genome sequencing data [80]. In the specific
context of metagenome assembly, however, de novo meth-
ods (e.g. [58, 90, 87]) are far more commonly used than
reference-based methods (e.g. [24, 71, 7]). Some of this
discrepancy can likely be attributed to a hesitance from
researchers to rely on reference databases [87]. Variations
in these databases can have difficult-to-interpret biases on

8See Figure 4a in [58] for an example of one connected
component of an assembly graph. This component, which
corresponds to a bacterial genome classified in the class
Clostridia, contains many bubbles that indicate strain-level
diversity.

6



analyses that make use of them [88, 71], and many micro-
biomes may be expected to contain previously-unstudied mi-
crobial genomes that might benefit from an analysis unbi-
ased by reference databases [6, 71]. Notably, some reference-
based metagenome assemblers make use of both de novo and
reference-based methods [24, 71, 6].

As the quality of reference databases continues to improve,
reference-based metagenome assembly methods’ performance
will also improve [24], likely resulting in a rise in the popular-
ity of reference-based (or both de novo and reference-based)
metagenome assemblers. For the sake of simplicity, the re-
maining two dichotomies to be discussed in this section will
focus on de novo assembly methods.

3.3.2 Overlap graph versus de Bruijn graph assem-
blers

Given a collection of input reads, most de novo assemblers
construct a graph of some sort from these reads and attempt
to find paths or cycles of some sort within this graph [80].
However, the details of this approach vary between assem-
blers. The two most common types of graph used are overlap
graphs and de Bruijn graphs [77, 107]. These methods have
been compared in the literature numerous times [77, 31, 70,
80, 107, 99], so I will limit my discussion of these approaches
to a very basic examination of their graph structures and al-
gorithms used.

The overlap graph approach, also known as overlap-layout-
consensus, saw use in the earliest genome assembly algo-
rithms [120, 85, 70, 6]. Generally speaking, an overlap graph
is a directed graph where reads are represented as nodes,
and an edge from (v1, v2) indicates that read v1 overlaps
with read v2 (with some leeway in how “overlap” between
two sequences is defined) [77].

de Bruijn graph approaches to assembly [55, 99, 98, 139,
76, 10, 31] involve the use of a subtly different graph.9

Given some integer k ≥ 2, a simple de Bruijn graph can
be constructed as a directed graph where all unique strings
of length k−1 present in the reads are represented as nodes
in the graph. Edges correspond to strings of length k, also
known as k-mers: edges are added between two nodes (v1, v2)
if there exists a k-mer in the reads whose first k− 1 charac-
ters are v1 and whose last k − 1 characters are v2 [55].

Often, the problem of assembly is reformulated as the prob-
lem of finding paths (or cycles) through either graph struc-
ture [77, 31]. The interest is thus usually in finding a Hamil-
tonian path/cycle through the overlap graph or finding an
Eulerian path/cycle through the de Bruijn graph [77, 31].
The Hamiltonian Path problem is NP-complete, whereas
the Eulerian Path problem is solvable in linear time: this
has motivated the adoption of de Bruijn graph-based algo-
rithms for assembly [99, 77].

In spite of this apparent gulf in efficiency, some modern as-
semblers still use overlap graphs [62, 25]. Reasons for this
9Many different variations of de Bruijn graphs have been
applied to assembly over the years, including [55, 99, 98,
10]. For the sake of simplicity, the description given here
resembles the description of the “spectrum graph” given in
[55], or of a de Bruijn graph given in [31].

may include overlap graphs being subjectively easier to un-
derstand [70] and the recent argument that graph traversals
are less important than the process of finding contigs, which
is achievable in polynomial time regardless of the graph
structure in use [77].

I note that this brief discussion has necessarily left out many
relevant details from the past few decades—for example, var-
ious optimizations [85, 62] and error correction methods [99,
78] that have been developed to improve these approaches.

3.3.3 Single-genome versus metagenome assemblers
Recent years have seen a rise in specialized metagenome as-
semblers. These are often published as extensions to existing
assemblers: for example, metaFlye [58] and Flye [59], metaS-
PAdes [90] and SPAdes [10], or MetaVelvet [87] and Velvet
[139]. These metagenome assemblers use a variety of tech-
niques to account for the difficult properties of metagenome
sequencing data, as compared with ordinary genome se-
quencing data. Here I examine some of these difficult prop-
erties as well as the ways in which metagenome assemblers
attempt to handle them.

One well-documented characteristic of metagenome sequenc-
ing data is uneven coverage [90, 58]. Different microbes are
often present at wildly different abundances in a microbiome
[80], meaning that the coverage—or number of reads “cover-
ing” a given position in a given genome [3]—will often vary
substantially throughout a metagenome sequencing dataset.
In the worst case scenario, low-abundance genomes may be
only partially represented in the reads: these genomes will
thus be impossible to completely assemble from the sequenc-
ing data alone [103].

Even if all genomes present in a given microbiome are com-
pletely represented in the corresponding reads (albeit still
at uneven coverages), these coverage differences can pose
problems for certain assemblers. For example, in the Flye
assembler [59], rarer microbes can go unassembled due to
the way in which Flye identifies k-mers that seem “solid,” or
high-frequency [58]. The metagenome-specific exension of
Flye, metaFlye, addresses this problem by adding a specific
“k-mer selection mode” that accounts for uneven coverages
[58]. In essence, this solution represents a concession that
metagenome sequencing data will not have coverages as uni-
form as those seen in most single-genome sequencing assem-
blies. As the metaFlye manuscript demonstrates, using this
new k-mer selection mode increases the process’ accuracy
for metagenome data but decreases the process’ accuracy
for single-genome data [58].

Another problem inherent to metagenome assembly is deal-
ing with repeats. I have already discussed the problem-
atic effects that repeats can have on assembly in general
(see section 3.1.2.1). Repeats are a particular problem in
metagenome assembly: generally speaking, evolutionarily
similar microbes in a microbiome will have similar genomes
[90], and these similar genomic regions constitute interge-
nomic repeats that will complicate metagenome assembly
[72, 90]. For example, although marker genes are a useful
prerequisite for marker gene sequencing (see section 2.1),
their conserved regions are effectively repeats since multiple
genomes will contain these regions [140]—so, counterintu-
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itively, marker genes actually tend to cause problems for
metagenome assembly [90].

Similarly to how the effects of uneven coverage can in the-
ory be mitigated by increasing coverage, i.e. generating
more reads from a sample [103], the problem of interge-
nomic repeats can in theory be mitigated by increasing read
lengths [72]. However, this is an unhelpful observation when
only short-read data are available, or when dealing with ex-
tremely long repeats. The short-read metagenome assem-
blers metaSPAdes [90] and MetaVelvet [87] both attempt to
address this problem using heuristic methods that, interest-
ingly, exploit expected coverage variations between strains
in a microbiome in order to resolve repeats. So, similarly
to how marker genes are helpful for marker gene sequenc-
ing but harmful for metagenome assembly, uneven coverages
can cause problems for some aspects of metagenome assem-
bly [58] but prove useful for other aspects [90, 87].

The strains of microbes present in a given microbiome will
usually have many similar regions to related strains (interge-
nomic repeats) along with some subtle differences. As will
be discussed in section 4, the problem of completely assem-
bling these so-called strain mixtures resembles the problem
of assembling haplotypes from a diploid genome [90]. As I
have discussed previously (section 3.2), an assembler would
ideally automatically assemble each unique strain into its
own contig—however, it should be clear by now that in-
tergenomic repeats and/or limited read lengths will usually
complicate this process.

Viewed from a high-level perspective, different metagenome
assemblers attempt to address the problem of assembling
strain mixtures in different ways. metaSPAdes, for exam-
ple, focuses first on generating a “consensus backbone” of
related strains in a microbiome and then identifying individ-
ual strains in this backbone after the fact [90]. By default,
metaFlye uses a similar “strain-suppression” mode that col-
lapses certain assembly graph structures indicative of strain
variation (e.g. bubbles, as discussed in section 3.2.2) [58,
48]. However, metaFlye also supports an alternative “strain”
mode that preserves these structures: this option reduces
the contiguity of the assembly, but provides a more con-
servative view of the potential strains in a microbiome [58].
Finally, MetaVelvet constructs a combined (“mixed”) assem-
bly graph of the input sequencing data and then attempts
to decompose this graph into individual graphs for each
strain in the microbiome based on expected coverage vari-
ations between strains—with the goal of transforming the
metagenome assembly problem into multiple easier-to-solve
single-genome assembly problems, while mitigating the ef-
fects of intergenomic repeats as discussed above [87].

Although all of these methods have proved useful for metage-
nome assembly, none of them are perfect. Metagenome as-
sembly, and in particular the de novo assembly of strains
within a metagenome, remains a fundamentally challenging
problem [89].

This inherent difficulty of metagenome assembly means that
this report’s quest to study individual strains of microbial
genomes in detail may not be immediately solvable by a
single run of an assembler. However, recent years’ improve-

ments in sequencing technologies and assembly methods alike
show that the field of bioinformatics is closer to this goal
than ever before. I conclude this report with a discussion of
the next steps on the path to strain-level metagenome as-
sembly, and some of the major obstacles that will lie in the
way.

4. FUTURE WORK: SOLVING THE
STRAIN SEPARATION PROBLEM

Metagenome sequencing provides researchers with the theo-
retical opportunity to assemble individual microbial strains’
genomes from a sample. Capitalizing on this opportunity
will require making use of improvements to sequencing tech-
nologies and assembly algorithms alike.

Contigs produced by most metagenome assemblers represent
chimeras of closely-related sequences from different genomes,
where variations have been collapsed in order to improve as-
sembly contiguity [80, 90, 58, 89]. Certain assemblers (for
example, metaFlye’s “strain” mode [58] as mentioned in sec-
tion 3.3.3) can occasionally avoid this problem by sacrificing
contiguity, but—in general, as of writing—substantial work
is required after metagenome assembly to resolve strain-level
genomes [89].

This task has been labelled the strain separation problem
[127]. Fortunately, the strain separation problem is essen-
tially a special case of the haplotype assembly problem, a
well-studied problem in bioinformatics [64, 11, 41, 89]; un-
fortunately, the haplotype assembly problem is NP-hard [64],
although various heuristic methods have been developed for
it [64, 11, 41].

The haplotype assembly problem was first formulated in
the context of sequencing diploid (e.g. human) genomes:
humans usually have two copies of each chromosome, and
assembling the full sequences of both chromosome copies
(rather than a single sequence representing a chimera of
both chromosome copies) is biologically useful [64]. Since
most positions in a diploid genome are homozygous (i.e. the
same between both chromosome copies), performing hap-
lotype assembly in a diploid genome involves finding reads
that span heterozygous (i.e. differing between chromosome
copies) positions [41], and “assembling” these reads to deter-
mine the two distinct chromosome sequences. In this way,
the haplotype assembly problem—as with the ordinary as-
sembly problems we’ve discussed (section 3.1.2.1)—benefits
from long read lengths that can connect multiple heterozy-
gous positions, as well as from low error rates that can pro-
vide confidence that what a read says about these positions
is accurate (section 3.1.2.2) [41].

The strain separation problem poses additional challenges
in comparison to the original haplotype assembly problem,
since—unlike the number of chromosome copies most hu-
mans have—the number of strains present in a microbiome
is rarely known a priori [89]. For example, one recently de-
veloped tool for attempting strain separation requires that
this number is specified as a parameter [127]. The other
problems unique to metagenome assembly, such as uneven
coverage and intergenomic repeats, will also complicate the
strain separation problem.
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That said, thanks to the rise of long-read sequencing [132]
and long-read metagenome assembly algorithms [58], recent
years have seen the development of early attempts at solving
the strain separation problem [89, 127, 16]. HiFi reads in
particular bode well for their ability to address this problem:
these reads’ low error rates will help in the identification of
positions that vary between strains, and these reads’ high
lengths will help connect these positions [89, 16]. A recent
preprint that used HiFi reads (in conjunction with addi-
tional sequencing data) to generate 428 complete10 MAGs
from a single microbiome is proof that these approaches are
bringing the field closer to the automatic assembly of strain-
level genomes [16].

Microbiomes are complex, vaguely understood environments,
even centuries after their discovery. Assembling microbial
genomes—and, more importantly, studying the biological
functions of these genomes’ communities—remain challeng-
ing problems. These problems are difficult due both to the
technical challenges inherent to metagenome assembly [136,
89] and due to challenges in data interpretation and study
design that are a hallmark of nascent scientific fields [129].
The various methods discussed throughout this report—
marker gene sequencing, metagenome sequencing, and meta-
genome assembly—have already proven to be useful tech-
niques for studying different aspects of microbiome sequenc-
ing data. As these methods continue to be refined, I believe
that microbiome research will continue to progress toward
its true potential.
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