
An Introductory Guide to LATEX

Marcus Fedarko

May 10, 2016

1 Introduction

From a 2009 survey of 130 academic journals—ten journals for each of thirteen scientific fields
of study—biologists François Brischoux and Pierre Legagneux estimate that 96.9 percent of
mathematics papers, 74 percent of physics papers, and 45.8 percent of computer science
papers are produced using the typesetting software LATEX. Brischoux and Legagneux note
that the use of LATEX, particularly with document formatting templates provided by academic
journals, avoids the problem of manually reformatting one’s submission to fit multiple journal
standards: saving a significant amount of time for the tool’s users.

LATEX1 is a popular typesetting tool that uses code to produce documents. LATEX can be
used to create many kinds of documents that look professional, are inherently portable, and
are highly editable: from academic papers to books to resumés.

This code-based paradigm differs from the what-you-see-is-what-you-get (WYSIWYG)
approach taken by many other word processing tools like Microsoft Word and OpenOffice
Writer in a few ways. One significant consequence of LATEX’s nature as a programmatic tool
is the initial difficulty in getting started with the software—and that, hopefully, is where this
guide comes in. This document will contain a brief, clear introduction to the tool and will
discuss LATEX compilation, document creation, and a number of useful features in LATEX.

A brief note: this guide presupposes some basic knowledge of how to use a computer,
including saving and opening files, downloading and installing software, and using your
device’s command line or terminal.

2 Compilation

LATEX code is just plain text. The act of converting this code to an output file is called
compilation—if you’ve used a compiled programming language like Java or C before, this
will be familiar. Many compilers exist for LATEX: your choice in compiler will probably be
based on what format you want your output to be in. Here are a few output type options:

• DVI files: Device Independent file format (DVI) files were designed to be the output
format of TEX, the system upon which LATEX is based. DVI files are generally used as

1Generally pronounced Lah-tech, but many different pronunciations exist. (Which pronunciation you end
up using doesn’t really matter, thankfully.)

1

an intermediate file type: that is, people tend to use DVI files as a stepping stone for
converting to other types of files (e.g. PDF or PS).

Running the command latex from your system’s terminal or command line, by default,
will produce DVI files.

• PDF files: Adobe Portable Document Format (PDF) files are a popular document
format, used for a variety of purposes. You’ve probably used or seen a PDF before.

pdfLaTeX is a common compiler that produces PDF files directly from LATEX code,
avoiding the use of DVI files at all. DVI files can also be converted to PDF using
DVI-to-PDF tools like dvipdf.2

• PS files: Postscript (PS) files were initially designed as an input language for laser
printers. Over time, PS has evolved to be a well-known language for creating vector
graphics; PS was actually an influence on the development of PDF.

PS files can be produced from DVI files using DVI-to-PS conversion tools like dvips.

Regardless of your choice of output type and compiler, the general process of working
in LATEX as discussed in this document should remain relatively consistent. This is one of
the upsides of using raw text-based document design: the source code of a document is
inherently portable.

However, you do have a choice in how you edit LATEX code. As is discussed in section
7.3, there are a number of specialized LATEX editors that can help make the compilation and
output process more efficient for you. This guide only deals with using a simple plain-text
editor on your computer to create and edit LATEX code files—however, if you’d like to consult
and choose from some of the available LATEX editors before following the rest of this guide,
you can certainly do that.3

3 Our First Document

In this section, we’ll create—in four lines—a simple, working LATEX document. By the end
of this section, you should be familiar with the basic yet crucial parts of LATEX document
design.

Without further ado, here’s the source code for such a document:

1 \documentclass [12 pt]{ a r t i c l e }
2 \begin{document}
3 Hi , \LaTeX !
4 \end{document}

2The exact tool you use to produce PDF or PS files will depend on your operating system. As will be
mentioned soon, I recommend using a specialized LATEX editor that takes care of the compilation and output
process for you instead of manually producing LATEX output from the terminal or command line.

3You should probably note that, since many specialized editors will take care of compilation for you, the
use of such an editor removes the need for some of the compilation steps explicitly listed in the early sections
of guide.

2

This is rendered as:4

Hi, LATEX!

3.1 Line-by-line explanation

Looking at each line in order (using the line numbers to the left side of the source code)—

1. Here we declare the document class of the document as an article, passing in an op-
tional parameter indicating the document body font size as 12 points.5. We do this
by using the \documentclass command. LATEX commands generally follow this for-
mat: a backslash precedes the command name, with optional arguments following the
command name in square brackets and required arguments in curly braces.

The first line of a LATEX document usually involves declaring the document class of
the file. Many different document classes exist, all of which fulfill different purposes.
Furthermore, LATEX users can create and use their own document classes as they see
fit. The article document class is very commonly used and is an excellent starting
class, so we’ll only discuss article-class documents for most of this guide; for further
reading on different document classes, see the LATEX wikibook.6 For a brief discussion
of user-defined classes, see section 5.4.1.

2. This line signifies the start of the document environment, also referred to as the doc-
ument body. An environment in LATEX is simply a section of the document that is
formatted or otherwise treated a specified way during compilation. We use the \begin
command here to initialize the document environment: everything between the \begin
and \end commands denoting an environment’s range is considered part of that envi-
ronment.

3. As a part of the document environment, this line contains the text that will be displayed
in the output file. The \LaTeX command, as used in this line, is just used to display
the LATEX symbol in a fancy way—this trend of using commands to refer to similarly
named special symbols continues throughout much of LATEX.7

4. This line signifies the end of the document body, using the \end command to end the
document environment that was begun by the corresponding \begin command.8

4As a side note: LATEX automatically indents the first line in a paragraph. If you’d like to avoid this
behavior, you can just prefix the start of a paragraph with the \noindent command.

5The default LATEX font size is 10 points, indicated by the option 10pt.
6Available at https://en.wikibooks.org/wiki/LaTeX/Document_Structure#Document_classes
7We’ll see more examples of this paradigm in our later discussion in section 4.2 of math mode.
8We’ll see other examples of environments when we discuss mathematical alignment and lists.

3

https://en.wikibooks.org/wiki/LaTeX/Document_Structure#Document_classes

3.2 Writing and compiling the document

You can (and should) try generating this for yourself!
First, you should make sure LATEX is installed: the tool may be bundled with your

operating system, or you may have to download the software by following the instructions
at https://latex-project.org/ftp.html.

After verifying LATEX is installed, open up your favorite plaintext editor and create and
save a document containing just the above four lines of code—you can name the file any
valid filename you’d like, but for clarity the conventional filename suffix for LATEX source
files is .tex.

Next, go to the terminal (or command line, depending on your operating system) and
run the command latex name.tex, where name.tex is the filename of whatever you named
the file just now.9

This should produce a DVI file. You can now convert the DVI file into either PDF
(using the command dvipdf name.dvi, depending on) or PS (using the command dvips

name.dvi).

Congratulations! You just created your first LATEX document!

3.3 Where to go from here

Now that you’ve created a first document, the hardest part of getting started with LATEX
is over with. Take some time to mess around with the document source code—maybe try
using pdftex to generate PDF files from the source code without having to generate a DVI
file as an intermediate step, or try modifying the text and/or formatting of the document to
get a sense for how text editing works in LATEX.

4 Math Mode

One of the biggest advantages of working in LATEX is the tool’s capability to display mathe-
matical equations. Using, say, Microsoft Word to display equations involves a lot of clicking,
a lot of fine-tuning formatting, and a lot of unnecessary hassle. However, once you under-
stand the basics of using math mode in LATEX, formatting equations becomes very simple.
Let’s take a look at the example below:

1 \documentclass [12 pt]{ a r t i c l e }
2 \begin{document}
3 Look ! Here ’ s the sum over $3x + 8$ from $x = 1$ to 10 .
4 \ [
5 \sum {x = 1}ˆ{10} 3x + 8
6 \]
7 And here ’ s the sum in i n l i n e mode : $\sum {x = 1}ˆ{10} 3x + 8$.
8 \end{document} % same as l a s t time

9This assumes you’re running latex within the same directory the file is in—if not, you should first move,
or cd, into the directory containing the source code file.

4

https://latex-project.org/ftp.html

This is rendered as:

Look! Here’s the sum over 3x+ 8 from x = 1 to 10.

10∑
x=1

3x+ 8

And here’s the sum in inline mode:
∑10

x=1 3x+ 8.

4.1 Line-by-line explanation

Again, looking at each line in order—

1. Same as before, this line declares the document class and font size.

2. Same as before, this line starts the document body.

3. The characters contained within the dollar signs are contained within what we call
inline math mode—that is, mathematical objects that are designed to be used within
text. Mathematical objects in inline math mode are generally somewhat scaled down
to make fitting them within text easier.

4. The backslash and square bracket here indicates the start of display math mode: math-
ematical objects that are displayed outside of text.

5. Here we use the \sum command to generate a summation equation. We use the under-
score to indicate the subscript of the summation, x = 1 (enclosed in curly brackets),
and we use the carat symbol to indicate the superscript of the summation, 10 (also
enclosed in curly brackets). The body of the summation, 3x + 8, follows nicely after
the command.

6. This line signifies the end of display math mode.

7. To demonstrate the scaling-down of mathematical objects in inline math mode, here’s
the exact same summation from line 5 presented in inline math mode. Note how the
bounds of the summation are moved to the right of the sigma (Σ) symbol to save space.

8. As before, this line ends the document body. Note that the percent sign % is used to
start a comment : everything to the right of the percent sign on a line is considered a
comment, and is ignored by the LATEX compiler.

4.2 More Math Mode Commands and Syntax

Now that you’ve seen a basic example of inline and display math mode, adapting what
you’ve learned here to other mathematical formulae shouldn’t be too difficult. Most LATEX

5

math mode commands use similar syntax to \sum, and with some brief research it should be
simple to find a command suited for what you need.

As a very brief example, \int is the LATEX command for the integral symbol. It uses
very similar syntax to \sum: ignoring the document beginning/end commands for brevity,

1 Look ! Here ’ s the i n t e g r a l over $5xˆ2$ from π to $10y + z $.
2 \ [
3 \ int {\pi }ˆ{10y + z} 5xˆ2
4 \]
5 And here ’ s the sum in i n l i n e mode : $\ int {\pi }ˆ{10y + z} 5x ˆ2$.

produces

Look! Here’s the integral over 5x2 from π to 10y + z.∫ 10y+z

π

5x2

And here’s the sum in inline mode:
∫ 10y+z

π
5x2.

Aside from how similar this example is to the earlier example of \sum, there are a few
other things to notice: for one, the use of the carat symbol ˆ for exponentiation is something
new. Also, note how we use the pi symbol with just a simple command: similar to the \LaTeX
command discussed before, many such “special” symbols or characters can be generated in
LATEX with merely the use of a simple, easy-to-remember command.

4.3 Aligning Equations

The last thing we’ll talk about in math mode is the task of aligning mathematical equations.
This is useful for typesetting, say, the solution to a problem spread out over many lines.
This is best illustrated with an example:

log3 n−1∑
i=0

7ia

(
n

3i

)
= (1)

an

log3 n−1∑
i=0

(
7i

3i

)
= (2)

an

log3 n−1∑
i=0

(
7

3

)i
= (3)

an

((7
3

)log3 n − 1
7
3
− 1

)
= (4)(

3

4

)
an

((
7

3

)log3 n

− 1

)
(5)

6

At first glance, this looks like a fairly intimidating equation. Notice the aligning used,
however: the coefficients of an are perfectly aligned after they have been “pulled out” from
inside the summation, and the equals signs of each line are all aligned with each other. These
formatting tricks help to make the series of equations readable.

Here’s what the code used to generate this sequence of equations looks like:

1 \documentclass [12 pt]{ a r t i c l e }
2 \usepackage{amsmath}
3 \begin{document}
4 \begin{ a l i g n a t }{2}
5 & \sum { i = 0}ˆ{\ log {3} n − 1} 7ˆ i a \bigg (\ frac {n}{3ˆ i }\bigg) & = \\
6 an & \sum { i = 0}ˆ{\ log {3} n − 1} \bigg (\ frac {7ˆ i }{3ˆ i }\bigg) & = \\
7 an & \sum { i = 0}ˆ{\ log {3} n − 1} \bigg (\ frac {7}{3}\bigg) ˆ i & = \\
8 an & \bigg (\ frac {\big (\ frac {7}{3}\big) ˆ{\ log {3} n} − 1}{\ frac {7}{3} −

1}\bigg) & = \\
9 \bigg (\ frac {3}{4}\bigg) a n & \Bigg (\bigg (\ frac {7}{3}\bigg) ˆ{\ log {3} n}

− 1\Bigg) &
10 \end{ a l i g n a t }
11 \end{document}

If the code seems sort of intimidating, don’t worry! The code isn’t as difficult to under-
stand as you might think at first.

As you can see, we explicitly use a package here to obtain extra functionality: amsmath.
This package was created by the American Mathematical Society (AMS) as an extension
to LATEX, as you can see from the package’s ams prefix. We use amsmath to make use
of the alignat environment, which we specify using the previously-seen \begin and \end
commands.

Regarding the actual aligning process done within alignat: the required argument to
the environment is the number of alignment points within the equations. That is, each
line (representing an equation) within the environment should contain exactly that many
alignment points. The ampersand symbol, &, is used to indicate a point of alignment. As
you can see, the first & takes care of aligning the an coefficients on the left side of the
equations—and the second & takes care of aligning the equals signs on the right side of the
equations.10

For reference, the \\ character sequence of two backslashes is used to explicitly end a line

in LATEX. Also, the size of parentheses in LATEX can be increased with the
(
\big

)
,
(
\Big

)
,(

\bigg
)

, and

(
\Bigg

)
commands. See what we did there?11

Take some time to look over the code and see how things work. You should be able to

10The line numbers off to the right side of the equations are automatically included in the alignat

environment. Appending an asterisk to the environment name to get alignat* removes the presence of
these line numbers—this trend, of asterisks removing enumeration, is actually fairly common throughout
LATEX commands and environments.

11There are also similar commands, like \small, that decrease the size of certain characters. However, in
math mode, the need to increase the size of certain characters is generally far more common than the need
to decrease the size of certain characters.

7

understand or at least take an educated guess at what most of the code does, even if the
code doesn’t look that pretty.

5 Other Useful Features

There are a few other features in LATEX that are worth knowing about for most people.
This section will broadly discuss the use of four key concepts: lists (ordered and unordered),
document sections, user-defined commands, and user-defined document functionality. Feel
free to skip over certain subsections, although each of these features should be useful in some
way to the majority of LATEX users.

5.1 Lists

Lists are a useful type of structure in almost any kind of document. Users of Microsoft
Word or other might have flashbacks to the struggles caused by the software automatically
detecting (or, sometimes, incorrectly not detecting) lists, enforcing arbitrary formatting and
making editing documents a hassle. Rest assured that using lists in LATEX is a lot easier,
and far more flexible.

5.1.1 Unordered Lists

As always, let’s open this section with an example:

1 \documentclass [12 pt]{ a r t i c l e }
2 \begin{document}
3 Here ’ s my shopping l i s t f o r f i n a l exams :
4 \begin{ i t em i z e }
5 \item Bread
6 \item Peanut butte r
7 \item S u f f i c i e n t mot ivat ion (\dots l o s t t rack o f t h i s)
8 \begin{ i t em i z e }
9 \item Chocolate

10 \item Chicken Noodle Soup
11 \end{ i t em i z e }
12 \end{ i t em i z e }
13 \end{document}

This is rendered as:

8

Here’s my shopping list for final exams:

• Bread

• Peanut butter

• Sufficient motivation (. . . lost track of this)

– Chocolate

– Chicken Noodle Soup

We make use of the itemize environment here, using the \begin and \end commands
as with the document and alignat environments earlier. Within the itemize environment,
we can use an \item command to indicate an item within the unordered list. We can also
nest other lists within lists, as seen in the third item in the outer list.12

5.1.2 Ordered Lists

Ordered lists, as you might have expected, are very similar in LATEX to unordered lists.
Instead of the itemize environment, you can just use the enumerate environment. Here’s
a similar example to the previous list:

1 \documentclass [12 pt]{ a r t i c l e }
2 \begin{document}
3 P r i o r i t i e s f o r f i n a l exams :
4 \begin{enumerate}
5 \item Study f o r a lgor i thms
6 \item Write that f i n a l paper
7 \item Study f o r programming languages
8 \item Survive
9 \begin{enumerate}

10 \item Eat l o t s o f choco l a t e
11 \item Sleep as much as p o s s i b l e
12 \end{enumerate}
13 \end{enumerate}
14 \end{document}

This is rendered as:

12You can only nest lists up to four levels in standard LATEX—beyond that, you will need to use something
like the easylist package to facilitate arbitrary-depth nested lists.

9

Priorities for final exams:

1. Study for algorithms

2. Write that final paper

3. Study for programming languages

4. Survive

(a) Eat lots of chocolate

(b) Sleep as much as possible

5.1.3 Wrapping up with lists

As you can see, lists in LATEX are pretty simple to use. Although we’ve only given them a
cursory treatment here, LATEX lists are also very flexible, both through the use of external
packages and through built-in options that give you a lot of room to change the behavior
of lists. These details are beyond the scope of this guide, but reviewing some of the further
reference material in section 7 is an excellent way to get exposed to the advanced functionality
of lists.

5.2 Document Sections

As you’ve probably noticed in this document, LATEX supports the ability to mark parts of
a document as within user-specified sections. By default, LATEX only supports three levels
of sections, defined by the \section, \subsection, and \subsubsection commands (which
each take one required argument, of that particular section’s name). If necessary, however,
you can use something like the titlesec package to circumvent this depth restriction.

A quick, silly example of using sections in a document:

1 \documentclass [12 pt]{ a r t i c l e }
2 \begin{document}
3 \ section{ Star t } Hey !
4 \ section{End} Hi !
5 \ subse c t i on {Beginning o f the End} Hi , and
6 \ subse c t i on {End o f the End} Bye !
7 \end{document}

This is rendered as:

10

1 Start

Hey!

2 End

Hi!

2.1 Beginning of the End

Hi, and

2.2 End of the End

Bye!

5.3 User-Defined Commands

It’s not necessary for normal LATEX use, but you can define new commands to abstract certain
repeated sections of LATEX code in a reusable command. This is done with the \newcommand
command.13

As a somewhat self-referential example, in the process of writing this guide I found it often
necessary to refer to LATEX commands by name. Ideally, this involves writing the command
name in mono-spaced font (done via the \texttt command), prefixed by a backslash (to
indicate it as a LATEX command). This is done by writing, say, \texttt{\textbackslash
commandname} to produce \commandname. That’s a lot of repetitive things to write out, so I
created a simple command, \dc,14 that does this automatically:

1 \documentclass [12 pt]{ a r t i c l e }
2 \begin{document}
3 \newcommand{\dc } [1]{\ texttt {\ textbackslash #1}}
4 My f a v o r i t e command i s \dc{ t e x t t t } .
5 \end{document}

This is rendered as

My favorite command is \texttt.

The optional argument to \newcommand is a number indicating how many arguments the
command takes. The arguments of the command you define are assigned numbers based on

13Users of C/C++ may recognize this feature as being somewhat analogous to the use of macros in those
languages.

14Short for “display command.”

11

the argument ordering.15 Arguments can be referred to in the defined command’s output, the
second required argument of \newcommand, by using a pound sign (or a hashtag, depending
on what generation you identify with) followed by the number of the desired argument.

So, following the command definition shows us that \dc takes one argument, the com-
mand name, which is output in a mono-spaced font and prefixed by a backslash. Every time
we call \dc, it will be replaced with its argument output in that particular manner.

This is obviously a fairly simple example of a user-defined command, but this should
serve as a decent starting point if you’re interested in learning more about creating your
own commands. Oftentimes I don’t realize the usefulness of creating a new command until
I start writing a document and notice redunancies like the one rectified by \dc.

5.4 User-Defined Document Functionality: Classes, “Templates,”
and Packages

As Brischoux and Legagneux noted, the use of predefined style information in LATEX is a
very powerful feature that can save a significant amount of time. Many such files exist that
fulfill many different needs. To start, though, we’ll discuss what forms a LATEX “template”
can actually take.

5.4.1 Classes (.cls files) and “templates”

As we discussed when we created our first document earlier in this guide, LATEX classes can
be used to create a variety of document types. LATEX users can also create their own classes
and save them as .cls files, facilitating the creation of documents based on user-defined
class files.

Actually creating new classes goes beyond the scope of this guide, but implementing
user-defined classes is an important skill to know about. Most “style guides” provided by
organizations (e.g. academic conferences or journals) will have instructions provided with
the requisite files. However, in general, to implement a user-defined class:

1. Download and, if necessary, extract the .cls file.

2. Move the .cls file to the directory the .tex file of your document is in—or, if you’d
like to use the class in multiple LATEX documents, you can move the .cls file to the
proper location for class files for your LATEX installation.

3. Declare the document class of your document to be the name of the .cls file, but
without the file extension. As an example, for the document class cooldocument.cls,
the first line of your .tex file should be \documentclass{cooldocument}.

That should finish the task. Many “style guides” provide a starter .tex file for you, which—
in the most accurate sense of the word—is what we could call a template.16 Using such a file

15Such that argument 1 is #1, argument 2 is #2, etc.
16For an example of such a “style guide,” see the Association for Computing Machinery’s guides here:

http://www.acm.org/publications/acm-latex-style-guide

12

http://www.acm.org/publications/acm-latex-style-guide

removes the need for you to follow steps 2 and 3 above.17

5.4.2 Packages (.sty files)

Remember the amsmath package we used earlier, when we were discussing math mode?
Packages like that are used to provide extra functionality to LATEX documents. Broadly
speaking, while classes define the type of a document, packages extend this in a generally
class-independent manner. Packages can just be included in a document via the \usepackage
command in the document preamble: the space after the \documentclass has been defined
but before the \begin{document} command has been provided.18 The \usepackage com-
mand takes the name of the package to be included as an argument. Packages use the file
extension .sty.

Many packages, like amsmath, are bundled with some distributions of LATEX: this means
that you don’t have to bother with downloading them yourself, and you only have to specify
your use of the package via \usepackage.

However, less-frequently-used packages may not be readily included with LATEX. As an ex-
ample, to include the (very fictional) package coolstuff.sty in your document, you should
first ensure that the coolstuff.sty file is located in the proper location for packages for your
LATEX installation. (The exact location will vary depending on how you installed LATEX ear-
lier.) After that, the process is the same as before: include the line \usepackage{coolstuff}
in your document preamble.

6 Conclusion

In just a few pages, we’ve covered the basics of LATEX. We’ve discussed compilation, docu-
ment creation, math mode, lists, sectioning, creating commands, and user-defined templates
in some form or another.

However, this guide has barely scratched the surface of what’s possible in LATEX. There’s
so much to know about the software that trying to get started can leave many people
paralyzed with indecision—I know that’s how my first experiences with LATEX went, and
that’s one of the main reasons for this guide.

After reading this document you should be ready to get started on creating something
in LATEX. What you create matters less than going through the process of creating: doing
research on further LATEX functionality, running into errors in your document, fixing them,
and being able to say at the end of the journey that you typeset a document by yourself is
fantastic experience for getting comfortable with LATEX.

For inspiration (and for reference), I’ve included a number of interesting and helpful
references in the next section, from reference material to task-specific guides to LATEX editors.
Hopefully you’ll find something there that piques your interest and inspires you to create
something!

17Furthermore, some user-defined classes may take certain optional arguments that you could look into
making use of. Reading the documentation/instructions provided by the class’ creator is useful here.

18See the code from section 4.3 for an example of a document preamble containing a \usepackage com-
mand.

13

7 Further Information

This section contains a number of references you may find helpful in applying LATEX to your
everyday work.

7.1 General Reference Material

• CTAN, https://www.ctan.org/: The Comprehensive TEX Archive Network (abbre-
viated CTAN) is a “set of sites” that distribute materials related to TEX, the typeset-
ting system upon which LATEX is based. These materials include but are not limited to
packages that add functionality to TEX (at the time of writing, over 5,000 such pack-
ages are distributed by CTAN), distributions of TEX and TEX’s descendant software
(including LATEX), and a significant amount of related documentation. Over 2,000 con-
tributors have helped with this project, including Donald Knuth, Professor Emeritus
of Computer Science at Stanford University and the creator of TEX.

• LATEX Wikibook, https://en.wikibooks.org/wiki/LaTeX: The LATEX Wikibook is
probably one of the most useful sources of documentation on LATEX. The book is
composed of the curated insights of a staggering amount of collaborators from many
different fields. The book is accessible and searchable online through a simple user
interface, and printable and PDF versions of the over-700-page book are also available.

• ShareLaTeX Documentation, https://www.sharelatex.com/learn/Main_Page: Share-
LaTeX is a popular online LATEX editor that is discussed in section 7.3. The ShareLa-
TeX website contains comprehensive documentation on many features of LATEX, from
equation typesetting to table and figure creation.

7.2 More Specific Guides

Although general information is useful, sometimes it helps to find a detailed guide to a
particular application of LATEX to a certain field of study or a certain type of document. I’ve
compiled a few such sources here.

• Typing Math, http://www.math.uiuc.edu/~hildebr/tex/course/intro2.html: Dr.
A. J. Hildebrand is a Professor Emeritus of mathematics at the University of Illinois.
This article, created by Dr. Hildebrand, is a useful guide and reference on typesetting
mathematical equations in LATEX. The document is a slightly more in-depth treatment
of math mode than in this guide, so Dr. Hildebrand’s guide is a great next step if
you’d like to learn some more about typesetting mathematical equations.

• Writing a thesis with LATEX, https://tug.org/pracjourn/2008-1/mori/mori.pdf:
Intended for an audience that already knows the basics of LATEX, this guide by Dr.
Lapo Mori is an excellent source of information for students planning on (or interested
in) writing a thesis using LATEX.

• Template-based introductory guide to LATEX for Economics, http://faculty.gvsu.
edu/ogural/LaTeX%20for%20economists.pdf: Dr. Laudo M. Ogura, an economics

14

https://www.ctan.org/
https://en.wikibooks.org/wiki/LaTeX
https://www.sharelatex.com/learn/Main_Page
http://www.math.uiuc.edu/~hildebr/tex/course/intro2.html
https://tug.org/pracjourn/2008-1/mori/mori.pdf
http://faculty.gvsu.edu/ogural/LaTeX%20for%20economists.pdf
http://faculty.gvsu.edu/ogural/LaTeX%20for%20economists.pdf

professor at Grand Valley State University, authored this introductory guide to LATEX
for use by incoming economics doctoral students. The guide should be a useful resource
for readers interested in composing social science documents in LATEX.

7.3 Specialized LATEX Editors

Although we assume the use of a normal text editor to edit LATEX code in this guide, there
are a number of other options for editing LATEX code that can make the process significantly
easier. Many such editors, for example, will automatically compile your code—removing the
need for you to go through the manual compilation process.

What editor you use is entirely up to you. However, to get you started, here’s just a few
options I’ve found:

• Overleaf, https://www.overleaf.com/: An online collaborative LATEX editor.

• ShareLaTeX, https://www.sharelatex.com/: Another online collaborative LATEX ed-
itor.

• TeXworks, http://www.tug.org/texworks/: A graphical LATEX editor that is open-
source software. TeXworks is available for Windows, OS X, and Linux. (Disclaimer: I
mostly use TeXworks.)

• Texmaker, http://www.xm1math.net/texmaker/: An open-source LATEX editor for
Windows, OS X, and Linux.

• TeXstudio, http://www.texstudio.org/: An open-source LATEX editor for Windows,
OS X, and Linux that originated as a fork of Texmaker with the goal of adding more
features to the editor.

15

https://www.overleaf.com/
https://www.sharelatex.com/
http://www.tug.org/texworks/
http://www.xm1math.net/texmaker/
http://www.texstudio.org/

	Introduction
	Compilation
	Our First Document
	Line-by-line explanation
	Writing and compiling the document
	Where to go from here

	Math Mode
	Line-by-line explanation
	More Math Mode Commands and Syntax
	Aligning Equations

	Other Useful Features
	Lists
	Unordered Lists
	Ordered Lists
	Wrapping up with lists

	Document Sections

	Start

	End
	Beginning of the End
	End of the End
	User-Defined Commands
	User-Defined Document Functionality: Classes, ``Templates,'' and Packages
	Classes (.cls files) and ``templates''
	Packages (.sty files)

	Conclusion
	Further Information
	General Reference Material
	More Specific Guides
	Specialized LaTeX Editors

